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Abstract
Learned vocalization, including birdsong and human speech, is acquired through 
self- motivated vocal practice during the sensitive period of vocal learning. The zebra 
finch (Taeniopygia guttata) develops a song characterized by vocal variability and 
crystallizes a defined song pattern as adulthood. However, it remains unknown how 
vocal variability is regulated with diurnal singing during the sensorimotor learning 
period. Here, we investigated the expression of activity- dependent neuroplasticity- 
related gene Arc during the early plastic song phase to examine its potential associa-
tion with vocal plasticity. We first confirmed that multiple acoustic features of 
syllables in the plastic song were dramatically and simultaneously modulated during 
the first 3 hr of singing in a day and the altered features were maintained until sleep. 
In a concurrent manner, Arc was intensely induced during morning singing and a 
subsequent attenuation during afternoon singing in the robust nucleus of the arco-
pallium (RA) and the interfacial nucleus of the nidopallium (NIf). The singing- driven 
Arc expression was not altered by circadian rhythm, but rather reduced during the 
day as juveniles produced more songs. Song stabilization accelerated by testosterone 
administration in juveniles was accompanied with attenuation of Arc induction in 
RA and NIf. In contrast, although early- deafened birds produced highly unstable 
song even at adulthood, singing- driven Arc expression was not different between 
intact and early- deafened adults. These results suggest a potential functional link 
between Arc expression in RA and NIf and vocal plasticity during the sensorimotor 
phase of song learning. Nonetheless, Arc expression did not reflect the quality of 
bird’s own song or auditory feedback.
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1 |  INTRODUCTION
Complex motor skills, such as human speech, playing in-
struments and birdsong, are acquired through sensorimo-
tor learning via repeated and self- motivated motor practice 
(Bengtsson et al., 2005; Doupe & Kuhl, 1999; Elbert, Pantev, 
Wienbruch, Rockstroh, & Taub, 1995; Snow & Hoefnagel- 
Höhle, 1978). Practice occurs at a steady rate throughout 
the day, but the largest improvement in performance occurs 
during the first hours of the day, suggesting that there is no 
simple relationship between the accumulation of motor prac-
tice and skill improvement during the learning period. This 
phenomenon is observed in many animal species, including 
primates, rodents and songbirds (Buitrago, Schulz, Dichgans, 
& Luft, 2004; Cao et al., 2015; Deregnaucourt, Mitra, Feher, 
Pytte, & Tchernichovski, 2005; Malone, Vasudevan, & 
Bastian, 2011; Robinson, Soetedjo, & Noto, 2006; Yin et al., 
2009; Zhou, Weldon, Tang, & King, 2003). Nevertheless, it 
remains unknown how motor skill improvement is associated 
with diurnal repeated practice during the learning period.

Juvenile male zebra finches develop their song from 
highly variable vocalizations to achieve the stereotyped 
acoustic structures of adult crystallized song (Figure 1a) 
(Immelmann, 1969; Price, 1979). Song acquisition is 
achieved through thousands of self- motivated singing utter-
ances during the critical period of vocal learning (Johnson, 
Soderstrom, & Whitney, 2002; Ohgushi, Mori, & Wada, 
2015). The acoustic features of song syllables are highly vari-
able during the early plastic song phase (40–60 posthatching 
days [phd]), compared with those in the crystallized song 
produced at adulthood (Deregnaucourt et al., 2004; Wood, 
Osseward, Roseberry, & Perkel, 2013). Furthermore, during 
a single day in the early plastic song phase, the average of syl-
lable acoustics, such as entropy variance, greatly shifts in the 
morning when compared with the afternoon (Deregnaucourt 
et al., 2005; Shank & Margoliash, 2009), indicating diurnal 
regulation of vocal plasticity.

For song learning and production, songbirds possess spe-
cialized neural circuits composed of a set of brain areas called 

the song nuclei: the vocal motor pathway necessary for song 
production and the anterior forebrain pathway (AFP) that is 
important for song learning (Figure 2a) (Bottjer, Miesner, & 
Arnold, 1984; Nottebohm, Stokes, & Leonard, 1976; Scharff 
& Nottebohm, 1991). The AFP forms a pallial–basal gan-
glia–thalamic loop composed of three song nuclei, that is 
the lateral magnocellular nucleus of the anterior nidopallium 
(LMAN), the basal ganglia nucleus Area X and the medial 
nucleus of the dorsolateral thalamus (DLM). HVC (proper 
name) projects to both Area X in the AFP and RA in the motor 
pathway. The vocal motor nucleus RA, which is analogous to 
the mammalian motor cortex, projects to the tracheosyringeal 
part of the 12th cranial nerve nuclei (nXIIts) that connects to 
syringeal muscles (Figure 2a) (Pfenning et al., 2014; Vicario 
& Nottebohm, 1988; Wild, 1993). During singing, RA in-
tegrates time- locked input from HVC and the basal ganglia 
loop activity from LMAN and then outputs bursting activity 
to nXIIts, which constructs the syllable acoustics (Aronov, 
Andalman, & Fee, 2008; Fee, Kozhevnikov, & Hahnloser, 
2004; Kao, Doupe, & Brainard, 2005; Sober, Wohlgemuth, & 
Brainard, 2008). NIf is the main nucleus providing auditory 
input to the song system via HVC in adult male zebra finches 
(Cardin & Schmidt, 2004; Coleman & Mooney, 2004) and 
shows premotor activity during song production (McCasland, 
1987; Naie & Hahnloser, 2011; Vyssotski, Stepien, Keller, & 
Hahnloser, 2016).

At the molecular level, a large variety of genes are devel-
opmentally regulated in the song nuclei during the critical pe-
riod of song learning in the zebra finch (Mori & Wada, 2015; 
Olson, Hodges, & Mello, 2015). Some immediate- early 
genes are differentially induced by singing in the song nu-
clei between juvenile and adult stages (Jin & Clayton, 1997; 
Wada et al., 2006). The activity- regulated cytoskeleton- 
associated protein Arc (also called Arg3.1) is a neuronal 
activity- dependent effector of long- term potentiation and 
long- term depression (LTD), via regulation of the endocytic 
trafficking of AMPA glutamate receptors (AMPARs) in 
dendritic spines, indicating a critical regulation of synaptic 

F I G U R E  1  Diurnal shift and stabilization of song syllable acoustics during the early plastic song stage in the zebra finch. (a) The critical 
period of song learning (upper panel) and song development (lower panels) in the zebra finch. Blue bars in the lower panels represent the motif 
structure of song. Scatter plots indicate 500 syllables distribution (duration vs. pitch). (b) Early plastic songs of a zebra finch juvenile (50 phd) 
in the morning (9 a.m.), afternoon (12 p.m.) and evening (7 p.m.) in a day. Two song examples are represented at each time point. (c) Trajectory 
plots of entropy variance and pitch of all song syllables during two successive days produced by the same bird shown in (b) (12,506 syllables at 
50 phd; 17,845 syllables at 51 phd). Acoustic features were plotted against time (left panels) or the order of syllables (right panels). Red- lined 
circles indicate the average of each song cluster (left panels) or each 1,000 syllables (right panels). (d) Distribution of probability density of 
entropy variance and pitch in the morning (9 a.m.), afternoon (12 p.m.) and evening (7 p.m.) using 500 syllables at each time point (upper panels). 
Comparison of probability density of the two acoustic features for assessment of the acoustic shifts (%) during morning and afternoon periods 
(lower panels). (e) Individual differences of acoustic shifts (%) during morning and afternoon periods for eight acoustic features (duration, entropy 
variance, pitch, entropy, FM, pitch variance, mean frequency and pitch goodness). n = 17 birds. (f) Comparison of the acoustic shifts (%) between 
morning and afternoon periods during the early plastic song stage (45–53 phd, n = 17). Black lines indicate acoustics shifts of individual bird. 
Red lines indicate average of 17 birds. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; mixed- model ANOVA with Bonferroni correction 
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plasticity (Chowdhury et al., 2006; Messaoudi et al., 2007; 
Plath et al., 2006; Shepherd & Bear, 2011; Steward, Wallace, 
Lyford, & Worley, 1998). Although Arc exhibits song- related 
expression in neurons within the zebra finch song nuclei 

and auditory regions (Lin, Vanier, & London, 2014; Velho, 
Pinaud, Rodrigues, & Mello, 2005; Wada et al., 2006), the 
relationship between vocal plasticity and Arc expression in 
the song nuclei has not been elucidated.
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F I G U R E  2  Diurnal change in Arc induction rates in RA and NIf during singing of the early plastic song phase. (a) Diagram of the neural 
circuits for song learning and production. The vocal motor circuit and the anterior forebrain pathway (pallial–basal ganglia–thalamic loop circuit) are 
represented as white solid and dotted lines, respectively. HVC (used as a proper name); RA, the robust nucleus of the arcopallium; Area X, Area X of 
the striatum; DLM, dorsal lateral nucleus of the medial thalamus; LMAN, lateral magnocellular nucleus of the anterior nidopallium; NIf, interfacial 
nucleus of the nidopallium; nXIIts, the tracheosyringeal part of the 12th cranial nerve nuclei. (b) Experimental timeline of brain sampling for morning, 
afternoon and evening singing. (c) Typical examples of expression of Arc mRNA in silence and singing during morning, afternoon and evening periods 
(47–52 phd). Singing duration (s) in 30 min after the initiation of singing at each time point is shown at the bottom. White signals: Arc mRNA. Red: 
Cresyl violet counter- stained cells. Sections are sagittal. Scale bar = 1.5 mm. (right panel) Higher magnification images of Arc expression in song 
nuclei. A, arcopallium; H, hyperpallium; M, mesopallium; N, nidopallium; P, pallidum; St, striatum. Scale bar = 200 μm. (d) Induction rate of Arc 
mRNA in song nuclei during singing in the morning (light blue; n = 12 birds, 45–54 phd, mean = 48.7 phd), afternoon (orange; n = 8 birds, 43–60 phd, 
mean = 51.8 phd) and evening (purple; n = 8 birds, 45–55 phd, mean = 50.5 phd). Silent condition (black; n = 5 birds, 50–55 phd, mean = 53.4 phd). 
**p < 0.001, ***p < 0.0001, ****p < 0.00001; ANCOVA with Bonferroni correction
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In this study, we investigated a potential association be-
tween singing- driven Arc induction and vocal plasticity 
during the early plastic song phase. We first confirmed that 
syllable acoustics greatly shift during the first 3 hr of singing 
in a day. In a concurrent manner, changes in diurnal singing 
behaviour patterns were also associated with Arc expression, 
as singing- induced intense Arc expression in RA and NIf in 
the morning but not the afternoon. Arc expression was atten-
uated when juveniles accumulated diurnal singing, but not 
regulated by circadian rhythm. To examine the modification 
of Arc expression by song quality or auditory feedback, we 
tested singing- driven Arc expression in the testosterone (T)- 
implanted juveniles that generated stabilized songs and in 
early- deafened adults that produced highly variable songs. 
These results suggest that singing- driven Arc expression as-
sociates with the acoustic stability of syllables specifically in 
the early plastic song phase.

2 |  MATERIALS AND METHODS

2.1 | Animals
Male zebra finches were obtained from our breeding colo-
nies at Hokkaido University. Birds were kept in breeding 
cages under a 13:11- hr light/dark cycle. Light- on was set at 
8:30 a.m. We used the birds that started singing within 30 min 
after lights on for all experiments and analyses. During song 
recording sessions or singing prevention, each bird was in-
dividually housed in a cage inside a sound- attenuating box 
(400 × 470 × 500 mm). They had ad libitum access to water 
and food. All experiments were conducted under the guide-
lines and approval of the Committee on Animal Experiments 
of Hokkaido University. These guidelines are based on the 
national regulations for animal welfare in Japan (Law for the 
Humane Treatment and Management of Animals with partial 
amendment No. 105, 2011).

2.2 | Song recording and analysis
Songs were recorded using a unidirectional microphone 
(SM57, Shure, IL, USA) connected to a computer with the 
sound- event triggered recording software sound analy-
sis pro (sap v2011.089; http://soundanalysispro.com/) 
(Tchernichovski, Nottebohm, Ho, Pesaran, & Mitra, 2000). 
Each song bout was saved as a sound file (wav file), includ-
ing time information. Low- frequency noise (<0.5 kHz) and 
mechanical noise were filtered out using avisoft- SASLab 
(Avisoft Bioacoustics, Glienicke, Germany). Analysis of 
syllables acoustic features was performed using SAP pro-
gram while measuring eight acoustic features: syllable dura-
tion, entropy variance, pitch, entropy, frequency modulation 
(FM), pitch variance, mean frequency and pitch goodness.

For quantitative evaluation of diurnal acoustic dynam-
ics of juveniles (n = 17, 45–53 phd, mean = 49.7 phd), 
testosterone- implanted juveniles (n = 10, 44–51 phd, 
mean = 46.9 phd) and adults (n = 12, 123–512  
phd, mean = 198.3 phd), 500 syllables were sampled from 
the first 0–1, 3–4 and 8–10 hr after the birds started singing 
and were analysed. To measure shifts in syllable acoustics 
between each time point, probability density distributions 
were derived for each acoustic feature using plot (den-
sity) function with the default setting of the statistics soft-
ware r program ver. 2.15.2 (Ihaka & Gentleman, 1996). 
For calculation of syllable acoustic shifts (%) of morning 
(comparison between 0–1 and 3–4 hr after singing started) 
and afternoon (comparison between 3–4 and 8–10 hr after 
singing started) periods, areas in probability density distri-
butions that were not overlaid by two time points were mea-
sured. For syllable trajectory plots (shown in Figures 1c 
and 5b,d), entropy variance or pitch of each syllable was 
plotted against generated time (left panel) or daily gener-
ated order of syllables (right panel). Song clusters were 
defined as continuous singing without 15- min silence pe-
riod (right panel). The p values for comparison of acoustic 
shifts between morning and afternoon periods during juve-
nile singing were obtained by applying linear mixed- effects 
model ANOVA (fixed effect factor = time, random effect 
factor = individuals) with Bonferroni correction. We used 
restricted maximum likelihood for likelihood estimation. 
To calculate how the model was improved by addition of 
factors to the model (the p value), we compared the mod-
els by ANOVA. The p values for comparisons of acoustic 
shifts (%) during morning period among normal juveniles, 
T- implanted juveniles and normal adults were obtained by 
applying the unpaired t test with Bonferroni correction.

2.3 | In-situ hybridization
Male zebra finches were split into 10 experimental groups: 
(a) 30- min silence after light- on (n = 5, 50–55 phd, 
mean = 53.4 phd); (b) 30- min singing after the initia-
tion of singing as morning singing (n = 12, 45–54 phd, 
mean = 48.7 phd); (c) 3- hr free singing + 1- hr si-
lence + 30- min singing as afternoon singing (n = 8, 
43–60 phd, mean = 51.8 phd); (d) 7- hr free singing + 1- hr 
silence + 30- min singing as evening singing (n = 8, 
45–55 phd, mean = 50.5 phd); (e) 8- hr silence after 
light- on + 30- min singing as diurnal singing- prevented 
(n = 9, 45–54 phd, mean = 49.7 phd); (f) 7- hr free sing-
ing + 1- hr silence (n = 4, 45–55 phd, mean = 52.0 phd); (g) 
testosterone- implanted + 30- min singing after the initiation 
of singing (n = 12, 43–53 phd, mean = 47.6 phd); (h) blank- 
implanted + 30- min singing after the initiation of singing 
(n = 9, 45–51 phd, mean = 47.4 phd); (i) adult 30- min si-
lent/singing (n = 17, 103–512 phd, mean = 153 phd); and (j) 

http://soundanalysispro.com/
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early- deafened + 30- min singing after the initiation of sing-
ing (n = 6, 102–134 phd, mean = 116.5 phd). Each bird was 
individually placed in a sound- attenuating box overnight, and 
singing behaviour (undirected singing) was recorded after 
lights on. All birds which we used started singing within 
30 min after lights on. For silent conditions, birds were in-
hibited from singing by manually tapping cages when they 
started singing. For brain sampling, the birds were subse-
quently killed by decapitation. Brains were removed and im-
mediately embedded in OCT compound (Sakura Fine Tech, 
Tokyo, Japan) inside tissue block moulds, frozen on dry ice 
and stored at −80°C until use. Singing duration was defined 
as the total time of singing during the last 30 min before de-
capitation for brain sampling.

To clone the partial cDNA of Arc (1,607 bp), 
PCR was performed on cDNA synthesized from total 
RNA from adult male zebra finch brains with prim-
ers (For: 5′- ATTCAAGGTGCTGAGAGC- 3′, Rev: 
5′- TTGCAGCAGATATTTCAAAG- 3′). PCR products were 
ligated into pGEM- T Easy plasmid (Promega, Madison, WI, 
USA) and sequenced. Arc cDNA fragments with T7 and Sp6 
promoter sites were PCR amplified with M13 forward and re-
verse primers from the inserted pGEM- T Easy plasmid. The 
amplified PCR fragments were used as DNA template for in 
vitro transcription using T7 RNA polymerase (Roche, Basel, 
Switzerland) to generate the antisense 35S- UTP- labelled Arc 
riboprobes.

Frozen sections (12- μm thick) were cut in the sagittal or 
coronal plane. Brain sections for a given experiment were 
simultaneously fixed in 3% paraformaldehyde/1× PBS (pH 
7.4), washed in 1× PBS, acetylated, dehydrated in ascending 
ethanol series, air- dried and processed for in situ hybridiza-
tion with antisense 35S- UTP labelled Arc riboprobes. A total 
of 1 × 106 cpm of the 35S- probe was added to a hybridiza-
tion solution (50% formamide, 10% dextran, 1× Denhardt’s 
solution, 12 mm EDTA (pH8.0), 10 mm Tris- HCl (pH8.0), 
300 mm NaCl, 0.5 mg/ml yeast tRNA and 10 mm dithioth-
reitol). Hybridization was performed at 67°C for 13 hr. The 
slides were washed in 2× SSPE and 0.1% β- mercaptoethanol 
at room temperature for 1 hr, 2× SSPE, 50% formamide and 
0.1% β- mercaptoethanol at 67°C for 1 hr and 0.1× SSPE 
twice at 67°C for 30 min each. Slides were dehydrated in as-
cending ethanol series and exposed to X- ray film (Biomax 
MR, Kodak, Rochester, NY, USA) for 24 hr to avoid overex-
posure of signal. The slides were then dipped in an autoradio-
graphic emulsion (NTB2; Kodak), incubated for 2 weeks and 
processed with D- 19 developer (Kodak) and fixer (Kodak). 
Developed slides were Nissl- stained with Cresyl violet ace-
tate solution (Sigma, St Louis, MO, USA) for the capture of 
high- resolution images.

For quantification of Arc mRNA signal, brain images 
on exposed X- ray films were taken with a microscope (Z16 
APO; Leica, Wetzlar, Germany) connected to a CCD camera 

(DFC490; Leica) with application suite V3 imaging software 
(Leica) (Mori & Wada, 2015). To minimize handling bias for 
signal detection among experimental groups, we hybridized 
the relevant samples at the same time for each experimental 
comparison and exposed them on the same sheet of  X- ray 
films. The same light settings were used for all images. 
Photoshop (Adobe Systems, San Jose, CA, USA) was used 
to measure the mean pixel intensities in the brain areas of in-
terest after conversion to 256 greyscale images. For compari-
son of the Arc induction rate among experimental groups, we 
performed an analysis of covariance (ANCOVA) to examine 
the homoscedasticity from the regression line of each group 
using Arc mRNA signal intensity on X- ray films and singing 
duration in the last 30 min before brain sampling.

2.4 | Testosterone administration
Each bird was anesthetized by intraperitoneal injection of 
pentobarbital (6.48 mg/ml; 60 μl/10 g body weight). Birds 
were subcutaneously implanted with a silastic tube (inner di-
ameter, 1.0 mm; outer diameter, 2.0 mm; and length, 10 mm) 
(Silascon SH 100- 0N; Kaneka, Osaka, Japan) containing 
either crystalline testosterone (4- Androstan- 17β- ol- 3- one, 
1.0–1.5 mg/animal) (Wako, Osaka, Japan) [testosterone 
(T)- implanted; n = 14] or silicon (blank- implanted; n = 9) 
from 30 phd. After surgery, birds were placed on a heat 
pad in a cage until they recovered to start eating and drink-
ing. To measure the serum testosterone of T- implanted ju-
veniles and blank- implanted juveniles, blood was sampled 
from the carotid artery when birds were killed by decapita-
tion for brain sampling. Sampling of brains and blood was 
performed by 9 a.m. after lights were turned on at 8 a.m. at 
43–53 phd. Serum testosterone was quantified using a tes-
tosterone enzyme- linked immunosorbent assay kit (Enzo, 
Farmingdale, NY, USA).

2.5 | Deafening operation
We used the same set of brain samples and song files of early- 
deafened zebra finches reported in a previous study (Mori 
& Wada, 2015). Juvenile zebra finches (17–23 phd) were 
deafened by cochlear extirpation. The birds were anesthe-
tized by intraperitoneal injection of pentobarbital (6.48 mg/
ml; 60 μl/10 g of body weight). After fixing the head on a 
custom- made stereotaxic apparatus with ear bars, a small win-
dow was made through the neck muscle and the skull near the 
end of the elastic extension of the hyoid bone. A small hole 
was then made in the cochlear dome. The cochlea was pulled 
out with a fine hooked wire. Removed cochleae were con-
firmed by visual inspection under a dissecting microscope. 
After surgery, birds were placed on a heat pad in a cage until 
they recovered and started producing calls. Thereafter, birds 
were put back in their nests and kept with their parents and 
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siblings until 32–41 phd. After fledgling, birds were kept in a 
breeding cage together. They were killed after 30-  to 60- min 
singing in the morning as young adults (n = 6, 102–134 phd, 
mean = 116.5 phd). As a control group, normal zebra finches 
of similar age (n = 6, 104–147 phd, mean = 130.8 phd) were 
killed under the same condition.

2.6 | Statistical analysis
Acoustic shifts (%) during morning and afternoon peri-
ods were compared using mixed- model ANOVA with 
Bonferroni correction (Figure 1f). Acoustic shifts (%) during 
morning were compared among juveniles, T- implanted birds 
and adults using one- way ANOVA with Bonferroni correc-
tion followed by unpaired t test with Bonferroni correction 
as post hoc test (Figure 4f). Singing- driven Arc induction 
was analysed using ANCOVA with Bonferroni correction 
(Figure 2d, 3c, 5b). Arc expression intensity and singing du-
ration were compared using Mann–Whitney U test (Fig. 6c,d, 
Supporting Information Figure S1).

3 |  RESULTS

3.1 | Diurnal variability and stabilization of 
syllable acoustics during the early plastic song 
production
To evaluate the diurnal vocal plasticity during song devel-
opment, we first examined how syllable acoustics shifted in 
a day during the early plastic song phase (Figure 1b). We 
traced the trajectories of two acoustic features, entropy vari-
ance and pitch, of all syllables produced by a juvenile during 
two successive days (Figure 1c). The average of these two 
acoustic features greatly shifted during the first 3 hr after the 
initiation of singing and remained relatively stable dur.ing the 
afternoon period until sleep (Figure 1c). Although previous 
studies focused on a single acoustic feature, entropy variance 
(Deregnaucourt et al., 2005; Shank & Margoliash, 2009), it 
remains unclear whether other acoustic features are simi-
larly and simultaneously regulated along with diurnal song 
development. We then compared the distribution shifts of 
eight acoustic features of syllable during morning (9 a.m. vs. 
12 p.m.) and afternoon (12 p.m. vs. 7 p.m.) periods to evalu-
ate the diurnal dynamics of syllable acoustics (Figure 1d). 
Although each juvenile modified individually a unique set of 
syllable acoustic features at different changing rates during 
diurnal singing, seven of examined eight acoustic features 
showed significantly larger shifts during the morning than 
during the afternoon (Figure 1e,f). This result indicates that 
a majority of syllable acoustics are altered mainly during the 
first 3 hr of singing, and the altered features are maintained 
until sleep during the early plastic song phase.

3.2 | Diurnal change in singing- driven Arc 
induction in RA and NIf
To elucidate the potential relationship between diurnal syl-
lable acoustic plasticity and neuroplasticity- related genes 
in the song circuits, we examined the induction of singing 
activity- driven Arc at different time points of the day: morn-
ing, afternoon and evening periods during the juvenile stage 
(Figure 2b). Singing activity- driven Arc expression is regu-
lated in the song nuclei to peak at 30 min after the initiation 
of singing and then decreased during diurnal singing in adults 
(Wada et al., 2006). For accurate estimation of the induction 
response of Arc, we performed brain sampling at each di-
urnal period just after 30- min singing before the decline in 
Arc mRNA. For brain sampling in the afternoon and even-
ing, we allowed birds to produce spontaneous singing from 
morning and kept them silent for more than 1 hr to ensure the 
clearance of previously accumulated Arc mRNA (Supporting 
Information Figure S1) and then collected brains at 30 min 
after the initiation of singing at each time point (Figure 2b). 
We then compared the singing- driven induction rate of Arc 
mRNA among morning, afternoon and evening periods. 
The induction rate was defined as induced Arc expression 
per singing amount during 30 min before brain sampling, 
which was calculated as Arc mRNA intensity divided by 
singing duration (seconds) in the last 30 min. First, we con-
firmed that the mean of singing duration in the last 30 min 
was not significantly different between morning, afternoon 
and evening singers (Supporting Information Figure S2). 
As a result, in the song nucleus HVC, LMAN and Area X, 
Arc mRNA was consistently induced by singing at similar 
induction rates at each time point of the day (Figure 2c,d). 
In contrast, in RA and NIf, Arc induction was significantly 
dampened in the afternoon and evening compared with its 
morning level (Bonferroni- corrected ANCOVA: morning: 
afternoon (RA), F(1,24) = 26.98, p = 8.7e- 5; morning: even-
ing (RA), F(1,24) = 19.85, p = 4.0e- 4; morning: afternoon 
(NIf), F(1,24) = 50.53, p = 9.2e- 7; morning: evening (NIf), 
F(1,24) = 32.24, p = 1.5e- 5) (Figure 2c,d). This result indi-
cates that singing- driven Arc induction rates in RA and NIf 
are different between in the first 3 hr after singing onset and 
other diurnal times during the early plastic song phase.

To further identify the potential regulatory mechanisms 
for the diurnal decrease in singing- driven Arc induction 
during the early plastic song phase, we examined the effect 
of circadian rhythm on Arc mRNA induction in RA and NIf. 
For this, we prevented birds from singing for 8 hr after lights 
on and then allowed them to freely sing for 30 min during 
the evening (Figure 3a). Following free singing, the singing- 
prevented juveniles intensely induced Arc in RA and NIf even 
at evening period, with similar induction rates during morn-
ing singing (Figure 3b,c). This result indicates that circadian 
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F I G U R E  3  Cumulative singing 
practice, not circadian rhythm, associated 
with change in Arc induction rate in a 
day. (a) Experimental paradigm of brain 
sampling to test singing experience- 
dependent regulation of Arc induction rate. 
(b) A typical example of induction of Arc 
mRNA after 30- min free singing following 
8- hr singing prevention (50 phd). Singing 
duration (s) is shown at the bottom. Scale 
bar = 1.5 mm (left panel) and 200 μm (right 
panels). (c) Induction rate of Arc mRNA 
during morning singing (light blue; n = 12 
birds, 45–54 phd, mean = 48.7 phd) and free 
singing in the afternoon after 8- hr singing 
prevention (red; n = 9 birds, 45–54 phd, 
mean = 49.7 phd). Silent condition (black; 
n = 5 birds, 50–55 phd, mean = 53.4 phd). 
NSp > 0.1; ANCOVA 
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rhythm does not causally regulate the singing- driven Arc ex-
pression in RA and NIf.

3.3 | T implant- induced song stabilization is 
accompanied with a decrease in Arc expression 
in RA and NIf
To further elucidate the association between syllable acoustic 
plasticity and Arc induction, we implanted T in juveniles to 
accelerate syllable acoustic stabilization at an earlier develop-
mental stage than sham- operated (blank- implanted) juveniles 
(Korsia & Bottjer, 1991; Sizemore & Perkel, 2011). T im-
plantation caused a significant increase in circulating T levels 
compared with blank implants (T- implanted: 10.7 ± 1.3 ng/
ml, n = 11 birds and blank- implanted: 0.95 ± 0.68 ng/ml, 
n = 9 birds, respectively; unpaired t test, p = 6.0 e- 13). As 
speculated, the mean shifts of syllable acoustic features in 
the morning were significantly reduced in T- implanted 
 juveniles at 43–53 phd compared with intact birds at the 
same age (Figure 4a–c and f). This reduced acoustic shift by 
T administration in juveniles resulted in a stabilized acous-
tic pattern that was similar to that observed in normal adult 
birds (Figure 4d,e,f). In the T- implanted juveniles compared 
to blank- implanted birds, singing- driven Arc induction 
was significantly decreased in RA (Bonferroni- corrected 
ANCOVA: RA, F(1,23) = 9.97, p = 0.013) (Figure 5). The 
T administration- induced decrease in the Arc induction rate 
in NIf was milder than in RA. In accordance with this asso-
ciation of song stabilization and attenuation of Arc induction 

F I G U R E  4  Accelerated syllable acoustic stabilization at the 
early plastic song stage by exogenous testosterone administration. 
(a) (upper panel) Experimental timeline of testosterone (T) implant 
and brain sampling. (lower panel) Song spectrograms of blank-  
and T- implanted juveniles at 50 phd. (b) Diurnal trajectory plots 
of entropy variance and pitch of all song syllables produced by a 
T- implanted juvenile (50 phd, 11,367 syllables). Acoustic features 
were plotted against time (left panels) or the order of syllables (right 
panels). Red- lined circles indicate the average of each song cluster 
(left panels) or each 1,000 syllables (right panels). (c) Distribution 
of probability density of entropy variance and pitch in the morning 
(9 a.m.) and afternoon (2 p.m.) using 500 syllables at each time point 
(upper panels). Comparison of probability density of the two acoustic 
features for assessment of the acoustic shifts (%) between morning and 
afternoon periods (lower panels). (d) Diurnal trajectory plots of entropy 
variance and pitch of all song syllables produced by adult (181 phd, 
11,864 syllables). (e) Distribution of probability density of entropy 
variance and pitch at morning (9 a.m.) and afternoon (2 p.m.) using 500 
syllables at each time point (upper panels). (f) Comparison of acoustic 
shifts (%) during morning period between intact (n = 17 birds) and T- 
implanted (n = 10 birds) juveniles, and adults (n = 12 birds). *p < 0.05, 
**p < 0.01, ****p < 0.0001; unpaired t test with Bonferroni correction 
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rate, Arc induction by morning singing in normal adults was 
significantly decreased in RA and NIf compared with intact 
and T- implanted juveniles (Bonferroni- corrected ANCOVA: 
blank- implanted juvenile: adult (RA), F(1,28) = 34.8, p = 8.2 
e- 6, blank- implanted juvenile : adult (NIf), F(1,28) = 16.17, 
p = 0.0013) (Figure 5b). These results suggest a strong corre-
lation between vocal acoustic plasticity and Arc induction in 
RA and NIf. Furthermore, the intense induction of Arc after 
singing may be limited under low serum T level condition 
through development, that is from subsong to early plastic 
song phases.

3.4 | Lack of relationship between Arc 
expression and song instability in early- 
deafened adults
To examine the potential contributions of the quality of 
bird’s own song or auditory feedback on the modifica-
tion of singing- driven Arc expression in RA and NIf, we 

compared singing- driven Arc induction between early- 
deafened adults that produced unstable songs (n = 6, 102–
134 phd, mean = 116.5 phd) and intact age- matched adults 
that sing stable crystallized songs (n = 6, 104–147 phd, 
mean = 130.8 phd) (Figure 6a). However, there was no 
significant difference in Arc induction rate after 30 min of 
morning singing in the song nuclei including RA and NIf be-
tween early- deafened and intact adult birds (p > 0.1, Mann–
Whitney U test). This result suggests that Arc expression was 
not modified with the quality of produced bird’s own song or 
auditory feedback.

4 |  DISCUSSION

In this study, we aimed to elucidate the potential molecular 
mechanisms underlying diurnal vocal plasticity during song 
learning, similar to the diurnal change in motor skill improve-
ment observed in many motor learning processes. Male zebra 

F I G U R E  5  Reduced singing- driven Arc induction rate in the song- stabilized juvenile by testosterone administration. (a) Arc mRNA induction 
in blank-  and testosterone- implanted juveniles and adults. Singing duration (s) in 30 min after the initiation of singing is shown at the bottom. Scale 
bar = 1.5 mm and 200 μm. (b) Induction rate of Arc mRNA in song nuclei during singing at morning in blank- implanted juveniles (green; n = 9 
birds, 45–51 phd, mean = 47.4 phd) and T- implanted juveniles (blue; n = 12 birds, 43–53 phd, mean = 47.6 phd), and adults (red; n = 17 birds, 
103–512 phd, mean = 153 phd). Silent juveniles (n = 3 birds, 48–53 phd, mean = 50.3 phd) *p < 0.01, **p < 0.001; ANCOVA with Bonferroni 
correction 
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finches at the early plastic song phase did not continuously 
develop their songs during the day. Juvenile birds dramati-
cally and simultaneously shifted multiple acoustic features 
of syllables during morning singing and the altered features 
remained relatively stable during the afternoon until the end 
of the day (Figure 1). In similarly aged birds, induction of 
the neuroplasticity- related gene Arc was differently regulated 
in RA and NIf at different time points in a day. The expres-
sion in RA and NIf was attenuated during the first 3 hr after 
the initiation of singing, independent of circadian rhythm 
(Figure 3). The singing experience- associated attenuation 
of Arc induction response was not observed in other song 
nuclei, HVC, Area X and LMAN, in which Arc was consist-
ently induced at a stable rate by diurnal singing (Figure 2). 
The induction rates in RA and NIf were reduced when stabi-
lized song is produced, which occurs with ageing or testoster-
one administration (Figures 4 and 5). However, the reduced 
Arc expression was not re- induced by production of unstable 
song at adult stages (Figure 6).

4.1 | Brain region- specific Arc expression
The diurnal attenuation of Arc expression in RA and NIf is ac-
companied with cumulative singing at least for 3 hr in a day. 
In contrast, the reduction in Arc induction is not observed in 
HVC, LMAN and Area X in the day. Furthermore, the at-
tenuation of Arc induction rates in NIf in the T- implanted ju-
veniles and adults was relatively mild compared with the one 
in RA (Figure 5). These results suggest the existence of brain 
region- specific mechanisms for regulation of singing- driven 
Arc expression even between RA and NIf. During singing at 
both juvenile and adult stages, robust neuronal activation is 
generated in the song nuclei including HVC, RA and NIf for 
vocal output (Goldberg & Fee, 2010; Okubo, Mackevicius, 
Payne, Lynch, & Fee, 2015; Ölveczky, Andalman, & Fee, 
2005; Ölveczky, Otchy, Goldberg, Aronov, & Fee, 2011; 
Vyssotski et al., 2016). Therefore, the singing- driven differ-
ent Arc expression among song nuclei may not be solely con-
trolled by neuronal activity itself.

F I G U R E  6  singing- driven Arc 
expression in early- deafened birds 
producing unstable songs. (a) (Upper panel) 
Experimental timeline for brain sampling 
of early- deafened birds. (Lower panels) 
A typical song spectrogram of an intact 
adult bird (123 phd) and early- deafened 
adult (133 phd). Scatter plot: distribution 
of 500 syllables (duration vs. pitch). (b) 
Singing- driven Arc expression in the song 
nuclei in an intact adult (526 s singing) and 
an early- deafened adult (645 s singing). 
Scale bar: 200 μm. (c) Arc induction rate 
in each song nucleus in intact (n = 6, 
104–147 phd, mean = 130.8 phd) and 
early- deafened adults (n = 6, 102–134 phd, 
mean = 116.5 phd) in the last 30- min 
singing. p > 0.1, Mann–Whitney U test. 
Error bars = SEM
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A potential mechanism for the regulation of Arc expression 
level may involve changes in the rate of Arc mRNA degradation 
rather than changes in the transcriptional induction. However, 
there are several studies showing spatiotemporal dynamics of 
Arc mRNAs at one cell resolution (Guzowski, McNaughton, 
Barnes, & Worley, 1999; Lin et al., 2014), suggesting RNA 
degradation could not make a critical impact on Arc expression 
at 30- min time point after stimuli. In those studies, after neuro-
nal stimulation by seizure or song playback, newly transcribed 
Arc mRNAs were exported to the cytoplasm at around 15 min 
and still retained there at 30 min without signal attenuation. 
In line with these studies, in the adult zebra finch, singing 
activity- driven Arc expression is regulated in the song nuclei 
to peak at 30 min after the initiation of singing and decreased 
during later singing in the day (Wada et al., 2006). Therefore, 
our brain sampling procedure at 30 min after singing initia-
tion could avoid RNA degradation effect on Arc expression. 
However, we do not have other supporting data to explain the 
Arc expression modification specifically occurring in RA and 
NIf. Further studies focusing on activity- dependent epigene-
tic regulation and/or developmental- specific neurotransmitter 
modification will be necessary to elucidate the brain region- 
specific regulation of Arc expression.

4.2 | Potential causal factors for 
modification of singing- driven Arc expression 
in juveniles
Is Arc expression modified by auditory feedback produced song 
quality, cumulative singing amount or other factors? First, sev-
eral lines of study do not support the auditory feedback effect 
on Arc expression in the song nuclei. Auditory signals are gen-
erally attenuated or absent in the song nuclei in awake zebra 
finches (Cardin & Schmidt, 2004; Dave, Yu, & Margoliash, 
1998; Schmidt & Konishi, 1998). In addition, neurons in the 
song nuclei including HVC and NIf that respond to auditory 
input during singing in the zebra finch there have not been not 
found, despite extensive investigations (Kozhevnikov & Fee, 
2007; Leonardo, 2004; Vyssotski et al., 2016). In this study, 
we could not find significant differences of activity- dependent 
Arc expression in the song nuclei between audition- deprived 
and intact birds after singing (Figure 6). Therefore, these re-
sults suggest that Arc expression in the song nuclei including 
RA and NIf is driven by the motor action of singing, not by the 
repeated auditory exposure to bird’s own song.

Second, a possible contribution of the quality of produced 
song to the modification of Arc expression could be consid-
ered. Arc expression might be strongly triggered by the pro-
duction of more variable song. This possibility was partially 
supported by decrease in Arc induction in RA and NIf in 
T- implanted juveniles that sang accelerated stabilized songs 
(Figure 5). However, the comparison between intact and early- 
deafened adult birds after singing did not agree with this idea, 

due to no significant differences of Arc expression between 
the two groups those produced different quality of songs (sta-
ble crystallized in normal adults vs. unstable variable songs in 
early- deafened adults) (Figure 6). However, both experiments 
cannot exclude additional effects of hormone or ageing on Arc 
induction. To segregate potential effects of the song quality 
and cumulative singing amount on Arc expression, an exper-
iment examining Arc expression in deafened juveniles during 
afternoon singing may be crucial. Diurnal syllable acoustic 
shift is significantly decreased in early- deafened compared 
with intact juveniles (Ohgushi et al., 2015). Therefore, when 
early- deafened juveniles freely sing until afternoon period, 
they accumulate total diurnal singing amount but their song 
quality is still highly variable due to no auditory feedback. 
In the experiment, if Arc induction rate is decreased, accu-
mulated singing amount but not reduction in song variabil-
ity could be regarded as a main causal factor to modify the 
singing- driven Arc induction rate in juvenile birds.

4.3 | Potential contribution of Arc induction 
in RA to the development of syllable acoustics
Arc is an activity- regulated neuroplasticity- related gene, 
which is translocated to dendritic synaptic sites and locally 
translated into functional protein (Steward et al., 1998). Arc 
protein interacts with the endocytotic proteins endophilin and 
dynamin and enhances the removal of AMPARs from the 
postsynaptic membrane (Chowdhury et al., 2006). The re-
moval of AMPAR from the postsynaptic sites is a crucial step 
for the induction of LTD (Man et al., 2000; Wang & Linden, 
2000). Therefore, the molecular function of Arc is considered 
to involve the induction of protein translation- dependent syn-
aptic LTD (Jakkamsetti et al., 2013; Park et al., 2008; Plath 
et al., 2006).

RA neurons induce LTD especially at the early plastic song 
phase in the zebra finch (Sizemore & Perkel, 2011). RA neu-
rons use both AMPA-  and NMDA- type glutamate receptors 
at the HVC- RA synapse (Stark & Perkel, 1999). Therefore, 
singing- driven Arc could regulate the removal of AMPARs 
from postsynaptic sites at HVC- RA connection, which could 
be a critical step for the regulation of LTD in RA. In support 
of this idea, testosterone administration abolishes juvenile- 
specific LTD (Sizemore & Perkel, 2011) and concomitantly 
decreases Arc induction rate in RA (Figure 5). Furthermore, 
LTD is associated with reduction in the number of dendritic 
spine in rat hippocampus (Bosch & Hayashi, 2012; Zhou, 
Homma, & Poo, 2004). In line with this, during the early- 
sensorimotor learning phase in the zebra finch, HVC- RA 
synapses, not LMAN- RA synapses, are selectively refined 
to decrease the number of total synapses by pruning of den-
dritic spines (Garst- Orozco, Babadi, & Ölveczky, 2014). Our 
results may suggest the possibility that the capacity of LTD 
and structural plasticity of dendritic spines in RA neurons 
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are differently regulated during a day by cumulative singing 
experience during the early- sensorimotor learning period. A 
causal study is necessary to examine the potential relation-
ships among singing- driven Arc induction in RA, synaptic 
plasticity and regulation of vocal acoustics.

4.4 | Potential contribution of Arc induction 
in NIf to regulate song plasticity during the 
early- sensorimotor learning phase
Although NIf is part of the auditory pathway that provides 
auditory input to the song nuclei HVC, auditory perturba-
tion experiment during singing revealed that song- related 
activity in NIf neurons is prevocal and does not respond 
to auditory error feedback for bird’s own song in both ju-
venile and adult stages (Lewandowski & Schmidt, 2011; 
Vyssotski et al., 2016), indicating that neural activity in 
NIf under singing condition is motor but not auditory- 
related. Although the developmental change in neuronal 
plasticity in NIf neurons has not been well elucidated, mul-
tiple lines of evidence reveal an active contribution of NIf 
to song learning. In zebra finch juveniles, inactivation of 
NIf has a drastic effect on production of plastic song caus-
ing it to return to subsong state (Naie & Hahnloser, 2011). 
In contrast, lesions and inactivation of NIf in adult birds 
lead to a transient (hours to days) disruptions in song se-
quence stereotypy (Cardin, Raksin, & Schmidt, 2005; Naie 
& Hahnloser, 2011; Otchy et al., 2015). These studies sug-
gest that the significance of NIf contribution to song pro-
duction developmentally changes during the critical period 
of song learning. If so, singing- driven Arc induction in NIf 
could play a role to regulate the activity- dependent physi-
ological and structural changes in NIf neurons to develop 
song acoustics at juvenile stage. Further studies using Arc 
overexpression or downregulation techniques need to ex-
amine a causal link between Arc expression in NIf and 
vocal plasticity during the early plastic song phase.

In conclusion, our results suggest a potential functional 
relationship between diurnal vocal acoustic development and 
changes in Arc induction in RA and NIf during song devel-
opment. If so, this functional link may further contribute to 
regulate the critical period for vocal learning via Arc- related 
synaptic plasticity. Moreover, the present results provide in-
sight into the cumulative practice- driven transcriptional plas-
ticity underlying motor skill learning and development.
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