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Abstract

Mechanisms for the evolution of convergent behavioral traits are largely unknown. Vocal learning is one such trait that
evolved multiple times and is necessary in humans for the acquisition of spoken language. Among birds, vocal learning is
evolved in songbirds, parrots, and hummingbirds. Each time similar forebrain song nuclei specialized for vocal learning and
production have evolved. This finding led to the hypothesis that the behavioral and neuroanatomical convergences for
vocal learning could be associated with molecular convergence. We previously found that the neural activity-induced gene
dual specificity phosphatase 1 (dusp1) was up-regulated in non-vocal circuits, specifically in sensory-input neurons of the
thalamus and telencephalon; however, dusp1 was not up-regulated in higher order sensory neurons or motor circuits. Here
we show that song motor nuclei are an exception to this pattern. The song nuclei of species from all known vocal learning
avian lineages showed motor-driven up-regulation of dusp1 expression induced by singing. There was no detectable
motor-driven dusp1 expression throughout the rest of the forebrain after non-vocal motor performance. This pattern
contrasts with expression of the commonly studied activity-induced gene egr1, which shows motor-driven expression in
song nuclei induced by singing, but also motor-driven expression in adjacent brain regions after non-vocal motor behaviors.
In the vocal non-learning avian species, we found no detectable vocalizing-driven dusp1 expression in the forebrain. These
findings suggest that independent evolutions of neural systems for vocal learning were accompanied by selection for
specialized motor-driven expression of the dusp1 gene in those circuits. This specialized expression of dusp1 could
potentially lead to differential regulation of dusp1-modulated molecular cascades in vocal learning circuits.
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Introduction

Characterizing the molecular basis for the evolution of

convergent traits may help us to understand the genetics of

adaptation. This question has received increasing attention [1–3].

Examples of convergent genetic changes contributing to conver-

gent traits include cis-regulatory or protein coding mutations in: i)

a pigmentation gene that generates similar but independently

evolved wing spots in multiple fruit fly species [4]; ii) a homeobox

transcription factor that leads to pelvic reduction in independent

lineages of both stickleback fish and mammals [5]; iii) a sodium

channel gene that was important for the evolution of electric

organs in independent lineages of electric fish [6]; and iv) the

melanocortin 1 receptor gene responsible for coat and skin color

variation across vertebrates [2]. All of these examples are traits

involving a convergent phenotype that is easily visible in the

organism. In contrast, vocal learning is a complex behavioral trait

that is not easily visible but shows striking convergent evolution.

Vocal learning includes the ability to imitate sounds and culturally

transmit vocal repertoires from one generation to the next [7–9]; it

is essential for spoken language acquisition [10]. Vocal learning is

found in only a few groups of distantly related mammals (humans,

cetaceans, bats, in two individual elephants, and possibly

pinnepeds) and a few groups of distantly related birds (oscine

songbirds, parrots, and hummingbirds) [8,11,12]. Because this

trait is not found in species closely related to each vocal learning

lineage, some researchers have argued that vocal learning evolved

independently in each lineage [8,13]. Recent phylogenetic

analyses of 19 genes and several retrotranposons suggest that

parrots may be more closely related to songbirds than previously

thought [14,15]. These findings led to the novel proposal that

vocal learning evolved twice in birds (once in hummingbirds and

again in the common ancestor of songbirds and parrots) and was

subsequently lost in suboscine songbirds (Fig. 1). However, this

interpretation depends on the genes used and whether protein or

nucleotide data are examined [16]. In either case, it is generally

agreed the both songbirds and parrots are distantly related to

hummingbirds.
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Despite their possible independent origins of vocal learning, all

vocal learning birds have song pathways composed of seven

forebrain song nuclei with similar, although not identical,

topology, anatomy, function, and connectivity (Fig. 1; [11,17–

22]; Table 1 lists all anatomical regions studied and their relative

similarities across species). In songbirds, the most well-studied

group, these nuclei are distributed into two sub-pathways: i) a

posterior vocal pathway that connects the forebrain to brainstem

Figure 1. Phylogenetic relationships and vocal pathways in avian vocal learners and vocal non-learners. Left: Phylogeny of some of the
major avian orders based on DNA sequences of 19 nuclear loci [14] leads to our suggestion of two independent gains (hummingbirds and ancestor of
parrots and oscine songbirds) and then a lost in suboscine songbirds. Also see [15] for support of this view. Alternative phylogenies exist, all with
vocal learners distantly related to each other [106,107]. This phylogenetic tree should be treated as a hypothesis as it is subject to change with more
DNA sequences added. The Latin name of each order is given, along with examples of common species. Circles show the minimal ancestral nodes
where vocal learning could have either evolved (red) or been lost (white) independently. Right: Proposed comparable vocal and auditory brain areas
among vocal learning and vocal non-learning birds. Yellow regions and black arrows, posterior vocal pathways; red regions and white arrows, anterior
vocal pathways; dashed lines, connections between the two vocal pathways; blue, auditory regions. For simplification, not all connections are shown.
The thalamus has broken-line boundaries to indicate that it is covered by the telencephalon in this view. Not all species have been examined for the
presence or absence of song nuclei. Neuroanatomical data of representative species are from the following publications [28,29,69,90,108]. Scale bars
< 1 mm. Abbreviations: ACM, caudal medial arcopallium; NCL, caudal lateral nidopallium; NDC, caudal dorsal nidopallium; NIDL, dorsal lateral
intermediate nidopallium. For other anatomical abbreviations, see Table 1.
doi:10.1371/journal.pone.0042173.g001
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vocal nuclei, is similar to mammalian motor pathways, and is

critical for the production of learned vocalizations; and ii) an

anterior vocal pathway that forms a pallial-basal ganglia-thalamic

loop, is similar to such loops in mammalian brains, and is

necessary for song learning (Fig. 1; [11,17,23–26]). None of these

song nuclei have been found to date in vocal non-learning species,

even in suboscine songbirds, which are closely related to oscine

songbirds, or in ring doves (relative of pigeons), which are

considered a close sister branch to the group that includes

hummingbirds (Fig. 1; [27–30]; to prevent confusion, we refer to

oscine songbirds as ’songbirds’ and suboscine songbirds as

’suboscine birds’ [28]). Anatomical, molecular neurochemical,

developmental, and behavioral evidence show that both vocal

learners and vocal non-learners possess homologous brainstem

vocal nuclei for production of innate vocalizations (these nuclei

also participate in the production of learned vocalizations in vocal

learners) and an auditory forebrain pathway used for auditory

processing and learning (Fig. 1; [11,31,32]).

The song nuclei and adjacent areas have similar activity-

dependent molecular responses, showing, respectively, robust

singing-driven and movement-driven expression of both immedi-

ate early genes (IEGs) c-fos and egr1 (a.k.a. zif268, NGF-1A,

Krox-24, and ZENK; [29]). These IEGs are transcription factors

that regulate expression of other genes involved in synaptic and

behavioral plasticity [33]. We recently discovered that another

IEG, dusp1 (also known as mitogen-activated protein kinase

(MAPK) phosphatase 1 [mkp1]), has a complementary regulatory

pattern to egr1 and c-fos [34]. Dusp1 expression is induced by

sensory stimuli in the sensory input neurons of the thalamus and

telencephalon, where egr1 expression is not induced by neural

activity. Conversely, egr1 expression is induced by neural activity

in higher order sensory neurons and in motor regions adjacent to

song nuclei, where dusp1 expression is not induced [34].

Consistent with these findings, high levels of behaviorally-driven

dusp1 and egr1 were not found in the same neurons [34]. These

findings supported the hypothesis based on data from in vitro

studies that dusp1 is a potent suppressor of egr1 expression [35].

Dusp1 is an important regulator of signal transduction pathways in

cells and acts by dephosphorylating the MAPK family of proteins,

thereby affecting induction of downstream genes [35,36].

Here we report that, in contrast to other motor systems, dusp1

showed robust motor-driven, singing-induced expression in song

nuclei of species from all three vocal learning lineages. For the

songbird species examined, high levels of dusp1 and egr1 were

almost exclusively co-expressed in the same neurons within song

nuclei but not in the rest of the brain. We found no evidence of

vocalizing-induced dusp1 expression in the forebrain of vocal non-

learners [37]. These findings suggest that selection for specialized

motor-driven expression of the dusp1 gene in vocal learning

circuits occurred during the evolution of brain systems for vocal

learning in multiple lineages of avian vocal learners.

Results

Dusp1 is regulated by singing in song nuclei of a
songbird

In songbirds, egr1 mRNA expression is robustly up-regulated in

higher order sensory neurons by sensory stimuli, in movement-

activated areas by limb and body movements, and in all

telencephalic song nuclei by singing. However, egr1 is not up-

regulated in the sensory input areas by sensory stimuli, including in

the Entopallium (E, visual), Basorostralis (B, somatosensory), and

L2 (auditory) (Fig. 2A–C; [29,38–41]). Dusp1 expression shows

the opposite pattern; it is not up-regulated in higher order sensory

Table 1. Terminology of comparable brain areas of avian
vocal learners.

Modality Vocal Movement Auditory

Species Song Parrot Humb Song Parrot Humb All

Subdivision

Nidopa-
llium

HVC NLc VLN DLN SLN DLN L1, L2,

NIf LAN VMN PLN LN n.d. L3, NCM

MAN NAO VAN AN AN AN

Mesopa-
llium

Av LAM VMM PLMV LMV n.d. CM

MO MO VAM AMV AMV AMV

Arcopa-
llium

RA AAc VA LAI LAI LAI AI

Striatum Area X MMSt VASt ASt ASt ASt CSt

Thalamus aDLM DMM aDLM DLM Ov

Uva

Midbrain DM DM DM MLd

Song, songbird. Humb, hummingbird. n.d., not done. Abbreviations are listed
below.
Abbreviations
AAc, central nucleus of the anterior arcopallium
aDLM, anterior nucleus of DLM
AI, intermediate arcopallium
AMV, anterior ventral mesopallium
AN, anterior nidopallium
Area X, a vocal nucleus (no acronym)
ASt, anterior striatum
Av, nucleus avalanche
CM, caudal mesopallium
CMM, caudal medial mesopallium
CSt, caudal striatum
DLM, dorsal lateral nucleus of the medial thalamus
DM, dorsal medial nucleus of the midbrain
DMM, magnocellular nucleus of the dorsal thalamus
HVC, a vocal nucleus (no acronym)
LAI, lateral intermediate arcopallium
LAM, lateral nucleus of the anterior mesopallium
LAN, lateral nucleus of the anterior nidopallium
LMV, lateral ventral mesopallium
LN, lateral nidopallium
MAN, magnocellular nucleus of the anterior nidopallium
MLd, dorsal part of the lateral mesencephalic nucleus
MMSt, magnocellular nucleus of the medial striatum
MO, oval nucleus of the mesopallium
NAO, oval nucleus of the anterior nidopallium
NCM, caudal medial nidopallium
NIf, interfacial nucleus of the nidopallium
NLc, central nucleus of the lateral nidopallium
nXIIts, 12th nucleus, tracheosyringeal part
Ov, nucleus ovoidalis
PLMV, posterior lateral ventral mesopallium
PLN, posterior lateral nidopallium
RA, robust nucleus of the arcopallium
SLN, supra lateral nidopallium
Uva, Nucleus Uvaeformis
VA, vocal nucleus of the arcopallium
VAM, vocal nucleus of the anterior mesopallium
VAN, vocal nucleus of the anterior nidopallium
VASt, vocal nucleus of the anterior striatum
VLN, vocal nucleus of the lateral nidopallium
VMM, vocal nucleus of the medial mesopallium
VMN, vocal nucleus of the medial nidopallium
doi:10.1371/journal.pone.0042173.t001
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neurons by sensory stimuli, nor in movement-activated areas by

movement, but is up-regulated in the sensory input areas E, B, and

L2 by sensory stimuli (Fig. 2E–G; [34]). Here we tested whether

dusp1 was up-regulated by singing in the song nuclei of the zebra

finch (Taeniopygia guttata), a songbird.

In stark contrast to our expectation, we found that singing

caused robust up-regulation of dusp1 in most zebra finch

telencephalic song nuclei (Fig. 2H,I; higher magnifications in

Fig. 3A). These nuclei included the following: HVC (a letter based

name) of the nidopallium, the robust nucleus of the arcopallium

(RA), and the interfacial nucleus of the nidopallium (NIf), in the

Figure 2. Egr1 and dusp1 mRNA expression in zebra finch brain induced by hearing, hopping, and singing. (A–D) Darkfield images of
in situ hybridizations with egr1 from male zebra finches of four different behavioral conditions: (A) silent control sitting in the dark; (B) sitting and
hearing song for 30 min in the dark; (C) deaf animals hopping in a rotating wheel in the dark; and (D) singing alone (.305.6 sec; .102 song bouts)
and some hopping for 30 min in the light. (E–H) Adjacent sagittal sections hybridized to dusp1. All animals were in sound attenuation chambers.
Three regions show overlap of hearing-driven and movement-driven gene expression: egr1 in PLN and PLMV, and dusp1 in the adjacent part of L2.
See [29,34] for more details on hearing- and movement-driven gene expression results. Song nuclei are the only areas with overlap in induced high
levels of egr1 and dusp1 expression. The anatomical drawings below the image show brain regions activated by hearing (medial brain section) or
other conditions (lateral brain section), with vocal areas highlighted in red. White, gene expression, mRNA signal. Red, cresyl violet stain. Sections are
sagittal. Scale bar = 2 mm. (I) Quantification of dusp1 and egr1 expression. Values significantly above 1 indicate induced expression in singing
animals (n = 4, except for DLM and Uva n = 3) relative to average of silent controls (n = 3). Birds that sang .83.0 sec (.34 song bouts) in 30 min
were used. The standard deviations of expression were large due to differences in singing amount (see Fig. 4A). Overall differences were significant
(p,0.001, repeated measure ANOVA between singing and silent groups). * p,0.05, ** p,0.01, and *** p,0.001, unpaired t-test in each nucleus
relative to silent control. Error bars, 6SD. The highest to lowest levels for dusp1 were in NIf, LMAN, Uva . HVC . DM, DLM, X, RA (p,0.01, ANOVA);
For egr1 - AreaX . HVC . LMAN . NIf . RA . Uva, DLM (p,0.05, ANOVA). Abbreviations: A, Arcopallium; aIH, anterior part of the intercalated layer
of the hyperpallium; H, hyperpallium; Hp, hippocampus; M, mesopallium; MD, dorsal mesopallium; MV, ventral mesopallium; N, nidopallium; Rt,
nucleus rotundus; St, striatum; v, ventricle. For other anatomical abbreviations, see Table 1.
doi:10.1371/journal.pone.0042173.g002
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posterior song pathway; and the lateral and medial portions of the

magnocellular nucleus of the nidopallium (LMAN, MMAN) and

the lateral portion of striatal nucleus Area X (LArea X), in the

anterior song pathway (Figs. 2H and 3A). Dusp1 expression was

not induced in the medial portion of Area X (MArea X) or the

oval nucleus of the mesopallium (MO. Only a few isolated cells

were labeled in avalanche (Av) of the mesopallium (Figs. 2H and
3A). To be certain that egr1 was induced in these same animals,

we hybridized adjacent sections with a probe for egr1 mRNA and

found robust singing-induced egr1 expression in all song nuclei,

including in MArea X and MO (Figs. 2D,I; higher magnification

in Fig. 3B).

In the brainstem, consistent with past findings [39,40], egr1

mRNA was robustly up-regulated in the midbrain dorsal medial

(DM) vocal nucleus of singing animals, but not in the thalamic

song nucleus Uvaeformis (Uva) or in the dorsal lateral nucleus of

the medial thalamus (DLM; Figs. 2D,I and 3B; although a past

study mentioned slight egr1 up-regulation in Uva [40]). Dusp1 was

also up-regulated in DM. In contrast to egr1, we also found robust

up-regulation of dusp1 in Uva and in a restricted anterior nucleus

within DLM (aDLM; Figs. 2H,I and 3A; originally described in

Wada et al 2004 [42]). The latter appeared to be in the same part

of DLM that receives a projection from Area X and projects to

LMAN (according to the images in [43,44]). Singing-related up-

regulation of dusp1 expression was not visible in other parts of

DLM.

Although dusp1 and egr1 were both expressed in the same song

nuclei, the relative expression levels differed (Fig. 2I). Dusp1 was

highest in NIf, LMAN, and Uva, and it was lowest in Area X

(Fig. 2I red bars). Egr1 was highest in AreaX and lowest in

LMAN (Fig. 2I blue bars). These findings indicate that dusp1 and

egr1 expression occur in the same regions within the telencephalic

song nuclei and DM, unlike the rest of the brain.

Dusp1 and Egr1 are Co-expressed in Song Nuclei
Neurons

We wondered whether the high induction of dusp1 and egr1 in

the same song nuclei and DM was due to neurons with high levels

of dusp1 being intermingled with other neurons that had high

levels of egr1. Another possibility is that both genes were expressed

Figure 3. Magnified images of co-expressed dusp1 and egr1 mRNA in vocal areas and adjacent non-vocal areas. (A) dusp1 mRNA
expression in song nuclei in a non-singing (A1–7), and singing (A8–14) male that sang for 30 min. (B) egr1 mRNA expression in adjacent sections.
Yellow dashed lines, Nissl-stained boundary of areas labeled in anatomical profiles in the right most column. Sections are sagittal; anterior is right,
dorsal is up. Scale bars = 200 mm. (C) Double-labeled images of vocal areas. Egr1 mRNA is labeled with DIG probe as a purple/brown precipitate and
dusp1 mRNA is labeled with a S35-probe detected by silver grains. Colored arrows refer to single dusp1 (red), single egr1 (blue), and double labeled
(red/blue) cells. (D) Double-labeled images of movement-activated areas adjacent to LMAN (AN) and LAreaX (ASt). White arrows refer to examples of
chromogenic background signals with a shadow effect (lighter inside the nucleus), which we used to locate individual cells. Orientation: Dorsal is up
and anterior to the right. Scale bars = 20 mm. (E) Proportion of single and double labeled cells in each area. The relative distribution of double-labeled
cells among vocal areas and motor areas are significantly different (p,0.05 and ,0.001; AreaX vs ASt and LMAN vs AN, respectively; n = 3 animals;
ANOVA). The distribution of labeled categories in RA and LMAN are significantly different from Area X (p,0.05, ANOVA), where in the latter only large
cells are dusp1-labeled and small cells are either egr1-labeled or double-labeled.
doi:10.1371/journal.pone.0042173.g003

Specialized Motor-Driven dusp1 in Vocal Circuits

PLoS ONE | www.plosone.org 5 August 2012 | Volume 7 | Issue 8 | e42173



in the same cells. To test for these alternatives, we performed

double-labeling for dusp1 and egr1 mRNAs on brain sections from

animals that sang for 30 min. In contrast to the rest of the brain,

we found that the vast majority (.95%) of cells labeled in RA,

LMAN, and DM were double-labeled for dusp1 and egr1

(Fig. 3C,E). HVC also contained a large proportion of double

labeled cells (55%). The relationship was reversed for the striatal

song nucleus Area X, where most of the labeled cells (,85%) only

expressed either egr1 or dusp1 (Fig. 3C,E). Within Area X, cells

positive only for egr1 appeared to be smaller, characteristic of the

medium spiny neurons of the striatum (Fig. 3C; [45]); cells

positive only for dusp1 appeared to be larger and sparsely

distributed, characteristic of the pallidal-like neurons of the

striatum [46,47]; cells positive for both dusp1 and egr1 (,15%)

were of the small type (Fig. 3C). In the thalamic song nuclei Uva

and aDLM, we found only cells positive for dusp1 (Fig. 3C,E).

In these same animals, there was increased egr1 expression in

some of the areas adjacent to the song nuclei (Fig. 2D). This

expression was presumably due to the movements and sounds that

the animals made while singing [29]. In these areas, such as the

anterior striatum (ASt) caudal-ventral to Area X and the anterior

nidopallium (AN) caudal to LMAN, the vast majority (,92%) of

labeled cells expressed only egr1 (Fig. 3D,E). There were some

cells positive for only dusp1 (,6%), and cells co-expressing dusp1

and egr1 were rare (,2%; Fig. 3E). We did not find any large

cells expressing dusp1 in ASt, unlike in Area X. The differences in

distributions between ASt and Area X, and between AN and

LMAN, were significant (p,0.05, p,0.001, respectively, AN-

OVA).

Dusp1 Expression in Song Nuclei is Motor-driven
We wondered if dusp1 expression in the song nuclei was motor-

driven, similar to egr1 expression, or was sensorimotor-driven, i.e.

required auditory feedback. This question was particularly

relevant to dusp1 for two reasons: 1) dusp1 is robustly up-

regulated by sensory stimuli only in sensory input neurons

throughout the rest of the brain [34]; and 2) song system nuclei

can show auditory responses (although mainly in anesthetized or

sleeping zebra finches [48–50]). We found that dusp1 expression

in song nuclei was not sensory-driven, as birds that heard 30 min

of song playbacks without singing themselves did not show higher

levels of dusp1 expression relative to silent controls (Fig. 2E vs
2F; overall difference: p = 0.982, HVC: p = 0.4661, RA: p

= 0.2318, NIf: p = 0.0984, LMAN: p = 0.1437, LAreaX: p

= 0.6281, aDLM: p = 0.1007, Uva: p = 0.3277, repeated

measures ANOVA followed by unpaired t-test between silent [n

= 3] and hearing [n = 3] groups). In contrast, in birds that sang

different amounts of song for 30 min (those from Fig. 2I), like

egr1 [39], the amount of dusp1 produced in song nuclei was

linearly proportional to the amount of song produced (Fig. 4A,
red diamonds and lines). In deafened birds, dusp1 expression was

still induced in song nuclei by singing and was still linearly

proportional to the amount of song produced. Moreover, this

correlation in the deaf animals was no different than that observed

in hearing-intact singing animals (Fig. 4A, black circles and lines;

multiple regression analyses). A time course experiment showed

that, like egr1 [29,39,51], dusp1 expression in song nuclei was

acutely induced within 15 minutes of singing, peaked by 30 min,

and was maintained thereafter as long as the birds continued to

sing (Fig. 4B). When singing was interrupted at 30 min, dusp1

expression declined over the following 30 min and almost reached

pre-singing baseline levels within 90 min (i.e. 120 min from the

start of singing; Fig. 4C). The relative differences in dusp1

expression among song nuclei were maintained over time

(Fig. 4B). These results demonstrate that unlike the sensory-

driven dusp1 expression in sensory input neurons, dusp1

expression in the zebra finch song system does not require

auditory input and is motor-driven like egr1 expression.

To assess whether singing-driven regulation of dusp1 mRNA

expression is influenced by song plasticity, we investigated dusp1

expression in juveniles that produced subsong during a plastic

stage of song development. We found no difference in the

proportional level of dusp1 expression in song nuclei (Fig. 4A blue

diamonds and dashed lines). These findings suggest that dusp1

expression in song nuclei is not influenced by the developmental

differences between juvenile (plastic) and adult (crystallized) song.

Prior studies have shown that the zebra finch auditory area field

L (L1, L2, and L3 not defined) displays neuronal firing preceding

singing behavior, suggestive of some motor activity [52]. We tested

for an influence of singing motor activity on dusp1 expression in

L2. We found that the amount of dusp1 expression in L2 was not

different between birds that did not sing but heard noises they

made by moving around the cage, and birds that sang and heard

these noises and songs of themselves (p = 0.58; unpaired t-test

between non-singing [n = 3] and singing [n = 5] groups). In these

hearing intact birds, dusp1 expression in L2 did not correlate with

the amount of song produced (Fig. 4A, L2 red line). In deaf birds

that did not sing, as expected, dusp1 expression was lower in L2

relative to hearing-intact non-singing controls. However, in the

deaf birds that sang, dusp1 expression in L2 was slightly, but

significantly increased, resulting in a linear correlation with the

amount of song produced (Fig. 4A, L2 black line). The regression

lines were significantly different between hearing-intact singers

and deaf singers (Fig. 4A, L2 red vs black line, multiple

regression). Although similar results have not been reported for

egr1 in higher order auditory neurons [39], it is possible that such

a small difference was previously missed. These findings suggest

that hearing-induced dusp1 is dominant in L2 but there could be

some motor-driven activity in L2 that is unmasked by deafening.

This idea can be tested specifically for L2 in the future using

electrophysiological recordings.

Dusp1 is Not Induced at High Levels in Non-vocal Motor
Systems by Strong Motor Activity or Even Seizures

Even in over exposed in-situ images of singing animals, we found

very low dusp1 expression and high egr1 expression in areas

adjacent to song nuclei (Fig. S1A,B). We wondered if dusp1 and

egr1 have different thresholds for induction in motor systems. We

reasoned that 30 min of singing activity is enough to induce dusp1

expression in song nuclei, but 30 min of movement activity might

not be enough to overcome the threshold in the adjacent regions

[34]. To test this idea, we examined dusp1 expression in two

groups of animals: 1) those that flew vigorously for 60 min while

being chased in a room by an experimenter, and could also hear

and see; and 2) those with seizures induced by the GABAergic

antagonist metrazole or the excitatory glutamate receptor agonist

kainate. The results from flying animals were consistent with prior

findings; dusp1 was only up-regulated in primary sensory

populations (e.g. L2 and IH), and egr1 was up-regulated in many

higher order sensory (L1 and L3) and motor (ASt and AN) areas,

including those adjacent to song nuclei (Fig. 5A1,B1; [29,34]). In

the seizure groups, egr1 was strongly up-regulated throughout the

brain, except in sensory input neurons, as expected (Figs. 5B2

and S1D; [29,53]). Dusp1 was still only up regulated in sensory

input areas (such as L2) and in pallial song nuclei (HVC, RA, and

LMAN; Figs. 5A2 and S1C). These findings support our

conclusion that motor-driven regulation of dusp1 expression is

specialized in song nuclei.
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Dusp1 is Regulated by Singing in the Song Nuclei of
Other Vocal Learning Avian Lineages

We next wondered if specialized motor-driven regulation of

dusp1 expression in song nuclei was also present in the two other

vocal learning lineages: parrots and hummingbirds. Thus, we

tested for dusp1 expression induced by singing in a parrot and

several hummingbird species.

Parrot
We found that six of the seven telencephalic song nuclei in the

budgerigar (Melopsittacus undulates) showed robust singing-induced

expression of dusp1: MO (analog of songbird MO), NAO (MAN

analog), and MMSt (Area X analog) of the anterior vocal pathway;

and NLC (HVC analog), AAC (RA analog), and LAN (NIf analog)

of the posterior vocal pathway (Figs. 1 and 6A,C,D). The only

nucleus with no visible dusp1 expression was LAM (analog of

songbird Av; Fig. 6A2,A6). The highest dusp1 expression occurred

in NAO (LMAN analog), NLC (HVC analog), and AAC (RA

analog), and the lowest occurred in the striatal song nucleus MMSt

(Area X analog). This expression pattern was not identical, but was

similar to the pattern observed in the zebra finch song nuclei.

Likewise, the expression in budgerigar MMSt was sparse and

appeared to be highest in the larger neurons (Figs. 6C1 and S2).

Egr1 was up-regulated in all seven telencephalic song nuclei of

these same animals (Fig. 6B,C,D; expression in AAC was low in

the animal shown). In the thalamus, there was robust singing-

induced expression of dusp1 but not egr1 in DMM within DLM

(analog of songbird aDLM; Fig. 6C3,4). In budgerigars that heard

playbacks of warble song (Fig. S3A,B; [34]) or heard themselves

sing (Fig. 6A,B), there was induced dusp1 expression in the

auditory input neurons of the telencephalon (L2) and induced egr1

expression in the adjacent secondary (NCM) and tertiary (CM)

auditory neurons. Thus, the dusp1 and egr1 expression patterns in

the auditory areas were complementary. The budgerigar song

playbacks did not induce dusp1 (or egr1, as expected [54]) in the

budgerigar song nuclei (Fig. S3A,B; [34]).

There were some differences in budgerigars relative to zebra

finches. In budgerigars, a part of nucleus basorostralis (B, primary

somatosensory neurons) ventral to LAN showed dusp1 expression

in the singing animals (Fig. 6A7); this part of B is where the

Figure 4. Temporal dynamics and auditory-feedback independence of singing-induced dusp1 expression. (A) Expression of dusp1
mRNA in intact adult (n = 5), deafened adult (n = 6), and juvenile subsong (n = 5) singers in seven song nuclei (HVC, RA, NIf, LMAN, LAreaX, aDLM and
Uva) and an auditory area (L2). Values were normalized by the average value in the same area of silent control animals of each group (n = 3 each).
Due to their small size, fewer singing samples were located for Uva (n = 3 each group) and aDLM (n = 3 each group). Lines represent the best fit of
the data analyzed by simple regression (R2 and p-values, upper left). Only L2 showed a difference in intact and deaf animals (p,value, lower right,
multiple regression). (B) Time course of continuous singing-induced dusp1 expression in birds that sang for various times, normalized to the average
of silent controls (0 min). (C) Time course of discontinuous acute singing, where singing was stopped at 30 min. There was an overall difference
among time points (p,0.001 in B and p,0.001 in C, repeated measures ANOVA), *p,0.05, Dunnett’s post test of each singing time point relative to
silent controls (0 min). Values are averages 6SD.
doi:10.1371/journal.pone.0042173.g004
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somatosensory representation of the beak is located in budgerigars

[55]. In contrast, dusp1 expression in B of singing zebra finches

was not as strong. Expression of dusp1 in the budgerigar MO (MO

analog) and NAO (LMAN analog) was highest in the cores of these

nuclei. By contrast, egr1 in budgerigars and both genes in zebra

finches were expressed evenly throughout each of the song nuclei.

Budgerigars are thought to lack a nucleus equivalent to songbird

Uva [56], and we did not find singing-induced dusp1 expression in

any thalamic nucleus other than DMM. We noted some

expression of both dusp1 and egr1 in the parrot midbrain nucleus

DM (Fig. 6C5,6), but expression levels were lower than in the

zebra finch. Despite these differences, the findings suggest that

dusp1 induction in song nuclei of the budgerigar is motor-driven,

as it is in the zebra finch.

Hummingbirds
There are two main lineages of hummingbirds, the hermits

(Phaethorninae) and non-hermits (Trochilinae) [57,58]. We found that

five of the seven telencephalic song nuclei showed singing-induced

dusp1 expression in the sombre hummingbird (Aphantochroa

cirrochloris), a non-hermit: VLN (analog of songbird HVC), VA

(RA analog), VAN (MAN analog), VAM (MO analog), and VMN

(NIf analog; Figs. 1 and 7A,C,D). The strongest dusp1

expression occurred in VAN (MAN analog) and VA (RA analog),

and minimal to no induced expression in the striatal song nucleus

VASt (Area X analog; Fig. 7C1,D). This pattern was not

identical, but similar to the patterns observed in the zebra finch

and budgerigar. In the Anna’s hummingbird (n = 2 singing; 1

silent control), another non-hermit, the pattern of singing-induced

dusp1 expression was nearly identical to the sombre hummingbird

(Fig. S4A1,2 vs S4B1,2). In the rufous-breasted hermit (n = 2

singing; 1 silent control), the expression pattern was reversed, with

higher dusp1 expression in VLN than in VA (Fig. S4C1,2). Egr1

was strongly expressed in all pallial telencephalic song nuclei of

these same animals (Fig. 7B,C,D) [22]; however, in VA and in

the striatal song nucleus VASt, egr1 expression is robust only in

animals that sang most, resulting in no significant difference in

egr1 expression between singing and silent animals (Fig. 7D). The

observed species differences could represent a difference between

species’ lineages or simply individual variation; resolving this

ambiguity will require sampling more animals of different species.

No singing-induced dusp1 (or egr1 as expected; [22]) expression

was detected in the song nuclei of sombre hummingbirds that

heard song playbacks (n = 3; data not shown). Some of the

hummingbirds, which were flying before brain dissection, shows

induction of egr1 expression in brain areas adjacent to song nuclei

(Fig. 7B1–3; [22,29]); however, we did not observe strong dusp1

expression in the same areas (Fig. 7A1–3). We also noted singing-

induced dusp1 expression (but no egr1 expression) in a thalamic

nucleus similar to aDLM, located dorsally in DLM of humming-

birds relative to songbirds and parrots (Fig. S4A3,B3,C3). There

was notable singing-induced dusp1 and egr1 expression in the

midbrain nucleus DM of hummingbirds (Fig. 7C5,6,D). We did

not find a nucleus similar to Uva. These findings show that

hummingbirds exhibit singing-induced dusp1 expression in song

nuclei that appears to be motor-driven, as it is in the songbird and

parrot.

Dusp1 is Not Regulated by Singing in the Forebrain of
Vocal Non-learning Avian Lineages

The specialized dusp1 expression in song nuclei of multiple

vocal learning lineages raises the question of whether dusp1

expression is also induced by singing in the forebrain of vocal non-

learning species. Although prior studies have claimed that vocal

non-learners lack forebrain song nuclei, (reviewed in [11]), this

claim had never been tested using activity-dependent gene

expression. Here we assayed for singing-driven dusp1 expression

in two species that have been demonstrated to be vocal non-

learners [28,59]: the Eastern phoebe (Sayornis phoebe), a suboscine

bird and close relative of songbirds; and the ringdove (Streptopelia

risoria), of the order Columbiformes and considered a member of a

close sister group to the group that includes hummingbirds (Fig. 1).

The male Eastern phoebe exhibits singing behavior that is used to

attract mates, and the male ring dove has a song-like cooing

behavior that is used for courtship and territorial defense; the

acoustic structure of the songs/coos is innate in both species

Figure 5. Lack of strong induction of dusp1 in areas adjacent to song nuclei. (A) Representative images of dusp1 expression in two groups
of birds: A1 flying, A2 metrazole-induced seizure. White, gene expression, mRNA signal; red, cresyl violet cellular stain. (B) Adjacent sections
hybridized with egr1. Scale bars = 1 mm for whole brains, and 500 mm for high power images of song nuclei.
doi:10.1371/journal.pone.0042173.g005
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[28,59]. After males produced these vocal behaviors in similar

amounts as the vocal learners, we examined dusp1 expression in

serial sections throughout the brain relative to silent controls.

We found no evidence of singing-induced dusp1 expression in

the telencephala of Eastern phoebes and ring doves (Fig. 8A,B).

There was high expression in the sensory input neural

populations (i.e. auditory L2; visual E; somatosensory B), as

expected [34]. The latter findings confirm that the zebra finch

dusp1 probe worked in these animals as it did in parrots and

hummingbirds in the present study, and other species in prior

studies [34]. We could not find even a small quantitative increase

in dusp1 expression within AN (Fig. 8C,D), the region where we

would expect to find the analog of LMAN, the nucleus in vocal

learners with the highest dusp1 expression. We did not detect a

Figure 6. Dusp1 and egr1 mRNA expression in budgerigar brain after singing. (A) Darkfield images of in situ hybridization with dusp1 from
a non-singing control (A1–4; no auditory stimulus, sitting relatively still) and a singing (A5–8) male bird that produced warble song for 30 mins. (B)
Adjacent sections hybridized with egr1. Sagittal (A1,5, B1,5) and coronal (A2–4,6–8,B2–4,6–8) sections are shown. The right most column shows
anatomical profiles with vocal areas highlighted in red; only the core of the MO and NAO song nuclei where we observe the dusp1 expression is
drawn. (C) Magnified images of dusp1 and egr1 mRNA expression in the nuclei indicated after singing. (D) Quantification of dusp1 and egr1
expression. Values significantly above 1 indicate induced expression in singing animals (n = 3) relative to the average of silent controls (n = 3, overall
difference p,0.001 repeated measures ANOVA; * p,0.05, ** p,0.01, and *** p,0.001 unpaired t-test for each brain region relative to silent controls).
Error bars, 6SD. Scale bar = 2 mm in B8 (applies to all A and B); 1 mm in C2 (applies to C1,2), C4 (applies to C3,4), and C6 (applies to C5,6).
doi:10.1371/journal.pone.0042173.g006
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thalamic area with greater dusp1 expression after singing that

would be equivalent to aDLM. In contrast, the midbrain vocal

nucleus DM did show dusp1 expression in the Eastern phoebes

that sang (Fig. 8A,C) and in the ring dove that cooed the most

(Fig. 8B,D); DM is present in all avian species, and it is

necessary for and active in the production of innate vocal patterns

[31]. Even in the animal that cooed the most, there were no

forebrain areas with cooing-induced dusp1 expression. Thus, we

do not believe that the amount of vocalizing can explain the

differences between vocal learners and non-learners. These

findings show that the vocal non-learning species tested thus far

do not have forebrain regions with specialized singing-driven

dusp1 expression.

Figure 7. Dusp1 and egr1 mRNA expression in sombre hummingbird brain after singing. (A) Darkfield images of medial to lateral sagittal
sections hybridized with dusp1 from a non-singing control (A1–3; no auditory stimulus, but flying) and a singing sombre hummingbird (A4–6) that
sang for 30 min. (B) Adjacent sections hybridized with egr1. The level of egr1 induction in VA and VASt of the singing animal shown is low. White,
gene expression, mRNA signal; red, cresyl violet stain. The right most column shows anatomical profiles with vocal areas highlighted in red. (C)
Magnified images of dusp1 and egr1 mRNA expression in several song nuclei and in DM after singing. (D) Quantification of dusp1 and egr1
expression in vocal areas and in L2 after singing. Values significantly above 1 indicate induced expression in singing animals (n = 3) relative to
average of silent controls (n = 3, overall difference p,0.001 repeated measures ANOVA; * p,0.05, ** p,0.01, and *** p,0.001 unpaired t-test for
each brain region relative to silent controls). Error bars, 6SD. Egr1 and/or dusp1 induction in VA, VASt, aDLM was only expressed in animals that sang
the most, and thus an overall significant difference is not seen when averaging across the animals used. Scale bar = 1 mm in B6 (applies to all A and
B); 500 mm in C2 (applies to C1,2), C4 (applies to C3,4), and C6 (applies to C5,6).
doi:10.1371/journal.pone.0042173.g007
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The Upstream Genomic Sequence of Dusp1 in Avian
Vocal Learners and Non-learners

The above findings indicate that there might be something

different about the regulatory regions of the dusp1 gene in vocal

learners that result in specialized motor-driven expression in song

nuclei. We examined the sequence upstream to the coding region

of dusp1 in the published chicken (Gallus gallus) and zebra finch

genomes [60,61]. However, we found that the zebra finch

sequence was incorrectly assembled, apparently due to repetitive

DNA sequences. Thus, we designed degenerate primers specific

for two regions conserved between chicken and zebra finch: a

region approximately 3 kb upstream of the dusp1 coding sequence

and the beginning of the coding sequence. These primers were

used in PCR reactions to clone the dusp1 upstream region from

genomic DNA of zebra finch, chicken, and 15 other avian species

(Fig. 9A). Sequence alignments (range from 2,646 to 5,048 bp

depending on species) using Dialign [62] followed by maximum

likelihood analyses [63] inferred a phylogeny that was similar to

the one reported by Hackett et al. 2008 [14] (Fig. 1 vs Fig. 9A).

Figure 8. Dusp1 mRNA expression in the brains of vocal non-learners after singing. Darkfield images of in situ hybridizations from medial
to lateral sagittal series with dusp1 from Eastern phoebes (A) and ring doves (B). Shown are brain images from silent control male birds (A1–3, B1–3;
no auditory stimulus) in a sound attenuation chamber and male birds that sang (phoebe) or cooed (ring dove) for 30 minutes (A4–6, B4–6). Inset
shows areas highlighted in boxes and quantified: L2, AN, and DM. White, gene expression, mRNA signal. Red, cresyl violet stain. Lines and names in
yellow, areas where each mRNA was robustly induced. Anatomical profiles to the right show vocal brain areas (DM) highlighted in red and non-vocal
areas in black. Scale bars = 2 mm. (C) Quantification of dusp1 expression in phoebes. (D) Quantification of dusp1 expression in ring doves. Values
significantly above 1 indicate induced expression in vocalizing animals (n = 3 for AN and L2; n = 2 for DM of phoebes, n = 4 for ring doves) relative to
the average of silent controls (n = 4 for phoebes, n = 3 ring doves; un-paired t-test). No significant difference was found.
doi:10.1371/journal.pone.0042173.g008
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The inferred phylogeny included a distant relationship of

hummingbirds to both parrots and songbirds. Transcription factor

motif searches using the Cluster Buster program revealed the

presence of multiple conserved sites within 300 bp upstream of the

start codon in all species tested: a putative TATA box

transcription site; a putative activity-dependent transcription

factor binding site for the cAMP response element (CRE); and a

putative activity-dependent transcription factor binding site for the

serum response factor (SRF; Fig. 9C). These putative activity-

dependent sites are consistent with dusp1’s response to neural

activity [34,64]. Although we noted minor differences between

species in these putative activity-dependent sites and the putative

TATA box, the differences did not segregate vocal learners and

non-learners (Fig. 9C). In contrast, the groups did differ in the

presence of microsatellite DNA. The largest microsatellite region

occurred approximately 10 bp upstream of the 5’ most CRE site,

and ranged in size from 578 to 2817 bp, depending on the species.

There were some specific sequences found either only in vocal

learners or non-learners (Fig. 9B pink and grey arrows

respectively). In addition, there was a tendency for vocal learners

to have longer (Fig. 9A variable region) and/or more copies (for

hummingbirds) of microsatellite repeats relative to their close vocal

non-learning relatives (songbirds vs suboscine birds; parrots vs

suboscine birds or eagle; Fig. 9D). In hummingbirds the

microsatellite repeats were 39 to the CRE sites and near the start

codon. In summary, there was a correlation between the

specialized motor-driven regulation of dusp1 expression in song

nuclei and the presence of microsatellite sequences upstream of the

dusp1 gene of vocal learners. Future investigations are necessary to

determine whether these sequence differences are responsible for

specialized dusp1 expression in vocal learners.

Discussion

Previous studies have shown that IEGs are expressed at similar

levels in song nuclei after singing and the adjacent regions after

performing other behaviors [29,65–68]. We found that dusp1 was

an exception to this pattern. Dusp1 showed strong motor-driven

(singing-induced) expression in the song nuclei, but not motor-

driven (hopping- or flying-induced) or sensory-driven (hearing-

induced) expression in the areas adjacent to song nuclei (Fig. 10A).

Moreover, dusp1 was co-expressed with egr1 in the same neurons

within song nuclei (demonstrated in zebra finches), which does not

occur in other brain areas. This specialized regulation in song

nuclei occurred in all three avian vocal learning lineages tested but

not in the forebrains of closely related vocal non-learning lineages.

These findings suggest a specialized induction mechanism in song

nuclei of vocal learners. If the phylogenetic evidence continues to

support multiple independent origins of vocal learning, then this

change in dusp1 regulation may have occurred independently

multiple times. Below we discuss the implications of these findings.

Convergent Regulation of Specialized Dusp1 Expression
in Forebrain Song Nuclei

The motor-driven expression of dusp1 in song nuclei of vocal

learners might reflect a convergent trait. Vocal non-learning avian

species, including the Eastern phoebe and doves, reportedly lack

forebrain song nuclei based on Nissl staining, the effects of lesions,

tract tracing, and gene expression evidence [28–31,42,69,70]. Our

results of no activity-dependent dusp1 expression in the forebrain

of singing animals support these prior conclusions. Alternative

possibilities are that: 1) Vocal non-learners have rudimentary song

nuclei that could have been missed even in serial sections

throughout the brain due to being only a few neurons in size; or

2) They have non-specialized song nuclei, without dusp1 up-

regulation. Nevertheless, all such possibilities lead to the same

conclusion. There are clear differences in vocalizing-driven gene

expression between vocal learners and non-learners examined thus

far, suggesting independent evolution of motor-driven dusp1

expression in song nuclei of vocal learning birds and/or possible

losses in suboscines and other species.

Possible Functional Consequences of Specialized Dusp1
Induction

The activity-dependent expression of dusp1 in song nuclei of

vocal learners and the conserved activity-dependent dusp1

expression in sensory input neural populations in birds and

mammals suggest that song nuclei and sensory-input areas may

share some properties. One possible shared property is high levels

of activity, which could cause more cellular stress due to high

calcium influx. Dusp1 is thought to be involved in protecting cells

from physiological stress and subsequent programmed cell death

by inactivating MAPK (ERK and JNK) and preventing the

subsequent expression of IEGs (Fig. S5A,C; [36,71–73]). The

cellular stress hypothesis predicts that song nuclei and sensory

input areas with high levels of dusp1 should have correspondingly

high levels of metabolic activity. A number of previous discoveries

support this hypothesis: 1) In songbirds, song nuclei and sensory

input areas have the highest levels of cytochrome oxidase (a

metabolism marker) in the telencephalon [74]. Changes in

cytochrome oxidase activity within RA during song development

positively correlate with the amount of spontaneous neural firing

in RA [75]; 2) Our observation of the data in a recent study [76]

suggests that both song nuclei and sensory input areas contain the

highest levels of Perineuronal Net (PNN) labeled neurons in the

telencephalon; PNN labeled neurons tend to have higher firing

rates and PNN are thought to protect cells against oxidative stress

[77]; 3) The firing rates in song nuclei and sensory input areas are

higher than in the adjacent brain areas of both singing and silent

zebra finches [45,78]; 4) The act of singing causes up-regulation of

many genes in songbird song nuclei, and many of the induced

genes are involved in the cellular stress response and neuropro-

tection [68]; and 5) It was recently shown that parvalbumin (PV),

known to buffer neurons from excess Ca2+ levels in neurons that

fire at high rates, is enriched at higher levels in song nuclei of all

three vocal learning avian lineages and in sensory input areas

relative to other brain areas [79]. Based on the combined findings,

we hypothesize the following functional role for dusp1 in the

evolution of vocal learning: after the emergence of a basic vocal

learning circuit, vocal learners gained specialized regulation of

dusp1 (as well as PV and cytochrome oxidase) in the circuit to

protect it from the higher levels of activity associated with the

novel behavior. This hypothesis can be tested by determining

whether knockdown of dusp1 increases the rate of cell death in

song nuclei when birds sing.

Potential Mechanisms of Specialized Motor-driven Dusp1
Expression in Song Nuclei

A mechanism of convergent, specialized motor-driven dusp1

expression in song nuclei would have to explain differential

regulation in multiple song nuclei of each vocal learning avian

lineage. One possible explanation is that there were convergent

changes in the dusp1 regulatory region that affected its transcrip-

tion only in song nuclei. Our analysis of the putative regulatory

sequence upstream of the dusp1 gene mainly found differences in

microsatellite repeats between vocal learners and vocal non-

learners. Microsatellite insertions in promoters are known to
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produce rapid gene expression evolution by repositioning

enhancers or suppressors farther or closer to the promoter

[61,80]. An alternative possibility is that an activity-dependent

transcription factor capable recognizing and binding to a region in

the dusp1 promoter was convergently expressed in song nuclei and

in sensory input areas. Such a hypothesis has been demonstrated

for other traits. Wing spots used for courtship displays evolved

independently in various lineages of drosophila, and in each case

mutations occurred in the cis-regulatory region of the gene that

codes for the yellow pigment responsible for the spot color; the

mutated cis-regulatory region is recognized by a specific homeobox

transcription factor that is expressed in a spot pattern in all

drosophila species [4]. In songbirds, there are two candidate genes

with high expression in song nuclei and sensory input neurons in

Figure 9. Upstream sequences of dusp1 among species. (A) Schematic of the ,3 kb upstream region of dusp1 in vocal learning and vocal
non-learning avian species (range 2,646 to 5,048 bp depending on species). The conserved region used to clone the sequence among the avian
species is indicated by an open box at the 59 end. ATG is the initiation codon of the protein. Red boxes, repetitive microsatellite sequences. Blue
boxes, retrotransposon sequences (MIR3/LINE-like and CR1/SINE-like elements in the songbirds, suboscines, and one parrot species). Arrows indicate
the similar sequences found only in vocal learners (pink) or in vocal non-learners (grey). The black arrow indicates microsatellite sequence close to the
start codon found in hummingbirds. Grey shaded region, proximal regulatory region where the putative cis-binding sites are found. (B) % of species
with identical sequences among at least 2–3 vocal learners (pink) or 3 or more vocal non-learner lineages (grey). Overlap is pinkish-grey. (C) Region
within 300 bp of the transcription start site (ATG), showing putative cis-binding sites for activity-dependent transcription factors (color-coded for
individual transcription factors); direction of arrows indicates strand on which the binding motif was found (forward + strand; backward - strand).
Translation start site (TSS) annotated in chicken genome. (D) Proportion of repetitive microsatellite sequence in the variable region between species
(dashed boxed region in (A)).
doi:10.1371/journal.pone.0042173.g009

Specialized Motor-Driven dusp1 in Vocal Circuits

PLoS ONE | www.plosone.org 13 August 2012 | Volume 7 | Issue 8 | e42173



the absence of singing: calcium binding protein S100B, which is

involved in neurite extension via microtubule assembly [81]; and

cannabinoid receptor 1 (CB1) [82]. However, unlike dusp1, S100B

most strongly expressed in HVC and throughout the midbrain,

but not in LMAN. CB1 expression is equal in LMAN and Area X.

Of the genes tested to date for differential expression in multiple

vocal learning avian lineages, none have the same spatial pattern

of expression as dusp1 [83–85]). The candidate gene that shows

the most spatially correlated expression with dusp1 in zebra

finches is another phosphatase (FAM40B); this gene shows high

basal expression in sensory input areas of the thalamus and

telencephalon, specialized expression in song nuclei, and is most

strongly expressed in LMAN (Whitney, Pfenning, Howard, Blatti,

Ward, Hartemink, Sinha, and Jarvis; submitted). FAM40B

expression has not yet been examined in other vocal learning

avian lineages.

To further explain our results, one would have to also postulate

one or more modifications that partially dissociate dusp1 and egr1

regulation. Dusp1 has been shown to be a potent inhibitor of egr1

expression in neuroblastoma cells, where over-expression of dusp1

completely blocks stimulus-induced egr1 expression by inactivating

ERK (known pathway illustrated in Fig. S5A; [35]). Our in vivo

data from birds and mice are consistent with this mechanism

(Fig. S5A,B; [34]). However, this mechanism cannot explain the

co-expression of dusp1 and egr1 in song nuclei. In the song nuclei,

dusp1-mediated down-regulation of egr1 would have to be

dissociated, which could theoretically result from a mutation

anywhere in the pathway, including dusp1 protein induction,

ERK activation, and egr1 regulation (Fig. S5C). Such a mutation

could be in the protein coding sequence of dusp1, in an interacting

protein, or in dusp1 splice variants that are specific to the song

nuclei and do not down-regulate egr1. All of the above hypotheses

are testable.

New Findings in the Thalamic Song Nucleus aDLM and
the Auditory Area L2

Although our goal was to study dusp1 regulation in telence-

phalic song nuclei, two additional findings offer new insights into

the functional organization of the song system and auditory areas.

First, we were able to localize a thalamic nucleus that is activated

by singing in all three vocal learning avian lineages: songbird

aDLM; parrot DMM; and hummingbird aDLM. The exact

boundary of DLM as a song nucleus in songbirds has not been

inconsistently defined [43,44,46,86,87]. The original designation

of DLM was based on pigeons, a vocal non-learner, and

investigators labeled the entire dorsal thalamic area as DLM

[88–90]. However, in budgerigar, a song nucleus DMM was

clearly defined as being within DLM [19,20,54]. Molecular

mapping of this nucleus using dusp1 for each vocal learning avian

lineage unambiguously placed it ‘within’ the larger DLM nucleus.

Figure 10. Summary of gene induction in vocal and movement-activated areas of vocal learners. Intensity of green indicates relative
levels of activity-induced dusp1 or egr1 induction in each area, determined from the in situ hybridizations (see methods). White (0), no detectable
induction; Dark Green (1), highest induction levels. Gene induction in song nuclei is due to singing, and in regions adjacent to song nuclei is due to
moving. * The values for hummingbirds are an average of several species: sombre hummingbird (n = 3 singing, n = 3 silent), Anna’s hummingbird (n
= 2 singing, n = 1 silent), and rufous-breasted hermit (n = 2 singing, n = 1 silent). For anatomical abbreviations, see Table 1.
doi:10.1371/journal.pone.0042173.g010
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In support of our conclusion, a recent electrophysiology study in

zebra finches found song premotor activity only in an anterior part

of DLM [91]. The aDLM location we mapped matches the

projection field from Area X and to LMAN [43,44]. It was named

anterior DLM (aDLM) in a previous study due to its differential

Nissl staining and differential expression of 8 out of 20 glutamate

receptors, similar to expression patterns in the telencephalic song

nuclei [42]. Similar features were not found in the DLM of ring

doves, where the expression of glutamate receptors was the similar

as the areas surrounding zebra finch DLM [42]. Johnson et al

1995 [43] and Bottjer et al. [92] noted that DLM had a

dorsolateral part that projects to LMAN, and a ventromedial part

that projects to the nidopallium around LMAN. Based on

calbindin expression and other evidence, Pinaud et al. [93]

proposed calling these areas the DLM core and shell, respectively,

and argued that the surrounding area is really a larger DLM

structure. We believe that all of these different designations

(aDLM, DLM core, and dorsolateral DLM) refer to the same area

that is connected to the song system, which we prefer to call

aDLM, as an anterior specialized part of DLM. The high levels of

singing-induced dusp1 expression and little to no egr1 expression

in songbird aDLM, parrot DMM, and hummingbird aDLM,

indicate that these thalamic nuclei (as well as songbird Uva) did

not acquire specialized co-expression of these two genes.

Second, we found that the auditory region L2 shows weak

motor-driven dusp1 expression after singing in deaf animals. This

finding still needs to be validated with electrophysiological

recordings. The prior work that showed that zebra finch ‘‘field

L’’ has neuronal firing preceding singing behavior [52] did not

specify whether recordings were made from L2 (where dusp1

expression is induced) or the adjacent L1 and L3 (where dusp1

expression is not induced). We also found previously [34] that a

small portion of L2, located above NIf and adjacent to the higher

sensory part of PLN (including the anterior HVC shelf), shows

both hearing- and movement-driven dusp1 expression; a similar

result was obtained for PLN and egr1 (Fig. 2C,G; [34]). These

results suggest that a narrow portion of the auditory pathway near

NIf has comparably robust sensory-driven and motor-driven

activity inside (dusp1) and outside (egr1) of L2. We hypothesize

that this region of the avian forebrain could be a central hub

where sensory and motor information are exchanged.

In summary, we discovered specialized motor-driven dusp1

expression in song nuclei of vocal learning birds. We suggest that

during the evolution of vocal learning, some genes, such as egr1,

maintained their functional properties from the cell types of the

brain subdivision in which they were derived, whereas dusp1

might have been independently modified multiple times to take on

new functional properties. It will be useful for future investigations

to determine whether selection of differential dusp1 expression

occurred in the vocal/speech brain areas of mammalian vocal

learners, including humans.

Materials and Methods

Animals
We used 55 male zebra finches (Taeniopygia guttata; songbird), 10

male budgerigars (Melopsittacus undulates; parrot), 6 male sombre

hummingbirds (Aphantochroa cirrochloris), 3 male Anna’s humming-

birds (Calypte anna), 3 male rufous-breasted hermits (Glaucis hirsuta;

hummingbird), 7 eastern phoebes (Sayornis phoebe), and 7 ring doves

(Streptopelia risoria). The zebra finches and budgerigars were from

our breeding colonies at the Duke University Medical Center and

Hokkaido University. The hummingbirds were captured from wild

populations in Santa Theresa, Espirito Santo, Brazil (sombre

hummingbird, rufous-breasted hermit) and in Riverside, Califor-

nia (Anna’s hummingbird). Some of the zebra finch and

budgerigar sections, and all hummingbird sections are adjacent

to sections of animals reported in our prior studies

[22,29,34,54,94]. The adult singing time course, juvenile singing,

flying, and seizure-induced groups of zebra finches and 1 silent

and 2 singing budgerigars were all from this study. We used males,

as they are typically the sex that has vocal learning and the

associated forebrain song nuclei. All animal procedures conducted

on animals bred in captivity were approved by the Institutional

Animal Care and Use Committee of Duke University (protocol

number: A107-08-04) or by the Committee on Animal Experi-

ments of Hokkaido University (protocol number: No. 20 (9)). For

animals from the field, procedures were approved by both Duke

University (protocol number A322-03-09) and the University of

California Riverside for the Anna’s Hummingbird, the Instituto

Brasileiro do Meio Ambiente E Dos Recursos Naturais Reno-

vaÅLveis (#058/97-DIFAS) for the sombre and rufous-brested

hermit hummingbird species, and by the Institutional Animal Care

and Use Committee of the Rockefeller University for Eastern

phoebes (protocol number: 08016; State permit: LCP316 and

Federal permit: 09862 issued to Field research center at the

Rockefeller University, Millbrook, New York).

Behavior Experiments
Zebra finches. We examined 13 experimental groups: 1)

silent non-singing controls; 2) birds that heard 30 min of song

playbacks; 3) birds that sang for 30 min and heard themselves sing;

4) a continuous time course singing experiment (sang up to

180 min); 5) an acute time course singing experiment (0 [silent,

from group 1], 15 min and 30 min of singing followed by 0 [from

group 3], 30, 60, and 90 min of silence); 6) deaf birds that were

silent; 7) deaf birds that sang for 30 min; 8) juvenile birds that were

silent; 9) juvenile birds that sang for 30 min; 10) birds that hopped

for 30 min in a rotating wheel; 11) birds that flew for 60 min; 12)

birds that had a metrazole-induced seizure; and 13) birds that had

a kainate-induced seizure.

For all experiments, birds were individually placed in sound-

attenuated boxes overnight to reduce IEGs levels in the brain to

baseline. On the next morning, the lights were turned on, and the

birds were observed by video and audio for silent or singing

behaviors (undirected singing). Behavior was recorded using

Sound Analysis Pro (http://ofer.sci.ccny.cuny.edu/

sound_analysis_pro; [95]) and by a digital video recorder. Silent

controls (group 1; n = 3) were kept without singing for 1 hour. The

hearing song controls (group 2; n = 3) were presented with

digitally recorded songs through a speaker (three different songs,

totaling 12 seconds, presented once every minute for 30 min) and

did not sing, similar to a described protocol [38,39]. The 30 min

singing animals (group 3; n = 5) were birds that spontaneously

sang (without playbacks) for various amounts (60–314 sec, 25–138

song bouts) during the 30 min session. A song bout was defined as

a continuous production of syllables followed by at least a 400 ms

of silence. Singing duration was defined as the total amount of

time spent producing song syllables. The transient time course

experiment included the silent controls (0 time point, Group 1),

birds that sang 15 min (group 5a; n = 3) and 30 min (Group 2),

and birds that either spontaneously stopped singing at 30 min or

were influenced to stop singing by the presence of the investigator

(next to an open sound-attenuation box) and were then sacrificed

30 min (group 5b; n = 3) and 90 min (group5c; n = 3) later (i.e. 60

and 120 min after the start of singing), following a previously

described protocol [39,68]. The continuous time course experi-

ment also included the silent controls (0 time point, Group 1), birds
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that sang 15 min (group 5a; n = 3) and 30 min (Group 2), and

additional birds that were allowed to continue to sing for 60 and

180 min (group 4; n = 3 each time point), at an average of 136.5

and 212.0 seconds of singing duration per hour, respectively.

For the deaf groups (groups 6 and 7; n = 3 silent and 6 singing

birds), animals were deafened as adults (102–113 days post-hatch;

dph) by bilateral cochlea removal following a previously described

protocol [94,96]. Thereafter, they were placed in sound-attenu-

ation boxes and on a given morning (2 weeks after deafening) after

they sang a required amount of song (.83 sec of singing during

the 30 min recording session, equivalent to .34 song bouts), their

brains were dissected and prepared for in situ hybridization. The

silent control deaf birds were treated the same way for the same

time period, but did not sing at that time. Deafening surgery was

verified by two measures: 1) Visual inspection of the shape of

cochlea we pulled out; and 2) After recovery, lack of any

behavioral response to vocalizations of other birds or of a startle

response to loud clapping of our hands.

The juvenile groups (groups 8 and 9; n = 3 silent and 5 singing

birds) were from 41 to 48 dph, where the singers spontaneously

sang various amounts (31–312 sec) of subsong alone during the

30 min session. For hopping animals (group 10; n = 3), deafened

birds were forced to hop in a rotating wheel for 30 min in the

dark, as previously described [29]. For flying animals (group 11; n

= 3), birds were forced to fly in a room (,35 square meters) for

60 min with 5 minutes rest every 15 minutes. For seizure birds

(groups 12 and 13; n = 3 metrazole-induced, n = 3 kainate-

induced), birds were injected intraperitoneally with either

metrazole (pentylenetetrazole; SIGMA, St. Louis, MO) or kainate

(kainic acid; Tocris Bioscience, Ellisville, MO) following a

previously described protocol [53]. Seizure activity was monitored

for 1 hour and additional drug was given if activity was not noted.

Kainate-induced seizures started with mild tremor of wing tips and

built up to chronic seizures with trembling of the whole body. The

final dose was 60–80 mg/kg metrazole or 5–20 mg/kg kainate.

Budgerigars. We collected three experimental groups of

animals, some from prior studies [22,29,34,54]: 1) silent controls

(n = 3 total; n = 2 from past studies); 2) birds hearing 30–60 min

of warble song playbacks (n = 4 total; all from past studies); and 3)

birds singing for 30–60 min (n = 3 total; n = 1 from a past study).

The experimental conditions were similar to that used for zebra

finches, except that the animals were presented with a playback of

recorded warbles for both the hearing and singing groups, as

previously described [54], because it was very rare for us to

observe budgerigars singing spontaneously in isolation without

playbacks. For the singing group, we collected animals that sang

40–100 bouts of warble song (lasting 2–10 seconds on average).

Hummingbirds. We obtained brain sections from the same

wild birds of prior studies [22,29]: 1) silent controls (n = 3 sombre

hummingbirds, 1 Anna’s hummingbird and 1 rufous-breasted

hermit; n = 5 total) and 2) ,30 min of singing (n = 3 sombre

hummingbirds, 2 rufous-breasted hermits, and 2 Anna’s hum-

mingbirds; n = 7 total). In brief, after 30 min of each behavioral

condition, birds were caught in sugar-water (24%) baited cage

traps. Silent controls were caught after waking and before the start

of the dawn chorus. Singers were caught in the morning after they

sang one or more song bouts per min for a ,30 min period. We

collected animals that sang ,30–90 bouts of song (lasting 2–10

seconds on average). The animals were continuously observed

with binoculars and a video camera from the time they awoke until

sacrifice. Some of the individuals were captured the day before

and placed in an outdoor aviary within its home territory, and

observed and recorded from the time the animal woke up in the

morning (i.e. observations started before sunrise) until sacrifice. If

we lost sight of a bird, it was not captured.

Eastern phoebes. We collected brains from two groups of

adult animals: silent controls (n = 4) and singing (n = 3). These

phoebes were collected as nestlings from the field at the

Rockefeller University Field Research Center in Millbrook, New

York during the breeding season in June-July, and were hand-

raised until 35–40 dph. After sexual maturity (260–280 dph), each

bird was individually placed in a sound isolation chamber

overnight, and was sacrificed after 45 min of silence or singing

on the next morning. We recorded song behavior with a

microphone in the box. The singing group spontaneously

vocalized the innate ‘fee-bee’ song. We collected three animals

that sang: 1) more than 100 songs in 45 min after lights were

turned on; 2) more than 300 songs in 80 min; and 3) more than

100 songs (15 minutes singing duration) in 45 min. The sex of the

birds was verified by gonad dissection after sacrifice. A separate

study is being prepared on a more detailed analysis of singing-

driven expression in the phoebe brainstem.

Ring doves. We collected two groups of animals: 1) silent

controls (n = 3 total all from our past dusp1 study [34]); and 2)

birds that cooed alone for 30 min (n = 4). The experimental

conditions were similar to that used for zebra finches. The animals

were kept in the sound isolation box overnight, and collected for

groups depending on the planned conditions and their spontane-

ous behavior. Typically, ,45 min after the lights came on in the

morning, males in the vocalizing group generated coos. We

collected animals that sang 30–70 bouts of coos (lasting 2–10

seconds each, or 2–5 coos/bout/min on average). Those that did

not coo in the same time period were taken as the silent control

group.

In situ Hybridizations and Double Labeling
After each of the above behavioral sessions, birds were

decapitated, and their brains were removed, embedded in OCT

compound (Sakura Fine Technical, Tokyo, Japan), frozen and

stored at –80uC. In situ hybridizations were performed as

previously described [68,97]. In brief, 12 mm frozen sections were

cut in the sagittal or coronal planes. Corresponding sections of all

birds of experimental comparisons of interest were fixed in 3%

paraformaldehyde and processed for in situ hybridization with

antisense 35S-UTP labeled riboprobes of zebra finch dusp1 or

egr1, as described in [34] and [68], respectively. Hybridization

temperature and washes were at 65uC for egr1 in all species and

for dusp1 in zebra finches, and 60uC for dusp1 in all other species,

due to a need for cross species hybridization. The 60uC
temperature was determined by trial and error to obtain a

maximum difference between background signal and dusp1-35S

signals in Field L2 and/or song nuclei [34]. Due to the lower

stringency hybridization, the background signal of in-situ hybrid-

izations was a little stronger for some (for hummingbird, phoebe

and ring dove). However, the sense strand of dusp1 showed the

same low background signal as did the antisense (not shown). The

hybridized sections were exposed to X-ray film (Biomax MR,

Kodak, Rochester, NY) for 1–4 days, then dipped into autora-

diographic emulsion (NTB2, Kodak), incubated for 1–3 weeks,

processed with D-19 developer (Kodak) and fixer (Kodak), Nissl-

stained with 2% cresyl-violet acetate solution (Sigma, St. Louis,

MO), and coverslipped.

The double labeling in situ hybridization method for dusp1 and

egr1 is described in detail in [34]. In brief, dusp1 expression was

detected with a radioactive 35S-UTP labeled riboprobe and egr1

with a Digoxigenin (DIG)-UTP labeled riboprobe. The two probes

were added simultaneously to the hybridization solution. After
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hybridization, the egr1-DIG label was reacted with an anti-DIG-

alkaline phosphatase antibody and a BM purple (Roche,

Indianapolis, IN) solution, and then the dusp1-35S signal detected

by dipping slides in Ilford autoradiography emulsion (Ilford K5,

polyscience; Kodak emulsion strips away the DIG signal). The

emulsion was exposed for 1–2 weeks at 4uC, processed with D-19

developer (Kodak) and fixer (Kodak), and the slides coverslipped

with mounting medium (VECTASHIELD with DAPI, Vector,

Burlingame, CA). The egr1-DIG mRNA label is purple in color,

located in the cytoplasm, and the dusp1-35S label appears as black

silver-grains in the emulsion above the cell cytoplasm.

Quantification and Statistics
Gene expression in song nuclei and other brain regions was

quantified following a previously described procedure [68]. We

used X-ray film of brain images that were digitally scanned from a

dissecting microscope connected to a SPOT-III CCD camera with

SPOT imaging software (Diagnostic Instruments, Sterling Heights,

MI). Care was taken to use the same light settings across all images

of an experiment. We used Adobe Photoshop CS3 (Adobe

Systems, San Jose, CA) to measure the mean pixel intensities in the

brain areas of interest from two or more adjacent sections on a 256

grey scale. To quantify and compare the relative amount of dusp1

versus egr1 expression among song nuclei of the singing or hearing

animals relative to non-singing silent controls, we normalized the

amount of dusp1 or egr1 expression in each song nucleus by the

average amount in silent controls. Statistical differences were

determined by repeated measures ANOVA for overall differences

between silent controls and singing groups, followed by unpaired t-

test among groups, and by ANOVA among song nuclei reacted

with each gene. To examine the amount of singing as a variable,

we performed a regression analysis on total time spent singing (in

seconds)for each animal of the 30 min singing group versus the

amount of dusp1 expression in each nucleus, and performed

multiple regression analysis to compare regression lines between 2

to 3 groups of animals for each song nucleus. To perform the time

course analysis, we performed repeated measures ANOVA if there

were overall differences among time points followed by a

Dunnett’s post test of each time point relative to the silent control

for each song nucleus; a Dunnett’s test is designed to compare one

control group relative to multiple other groups. For all test,

significance was considered at p,0.05.

Double label cells were quantified using a previously described

procedure [34]. We used a compound microscope at 60x

magnification and Slidebook software (Olympus, Tokyo, Japan)

to acquire images of the regions of interest. The total number of

labeled cells (range 50–71, n = 3 birds) within a given field from at

least two adjacent sections was counted. Of this total, the subsets of

single and double labeled dusp1 and egr1 cells were estimated and

corrected with the Abercrombie equation (N = n(T/(T+D)), where

N is the corrected number of the labeled cells, n the estimated

number of the labeled cells, T the thickness of the section (12 mm),

and D the mean diameter of the nuclei [98]. We only considered a

cell labeled if we could find a clear nucleus counterstained by

DAPI or lightly co-stained by the chromogenic background signal

(purple/brown reaction product) associated with the DIG reaction

product (for egr1) or ,10 or more silver grains above the cell (for

dusp1). DIG labeled cells were distinguished from the background

by visual inspection. The chromogenic background created a

shadow effect for all cell nuclei in the brain, including in areas

where egr1 is known not to be expressed (lighter inside the nucleus;

Fig. 3D, white arrows). These shadow labels and DAPI

overlapped. We found it easier to use the shadow label in the

same image settings as the real label to unambiguously locate

individual cells. The average background number of silver grains

per an average cell size area on the glass without tissue was 1–7.

Thus, we set the background conservatively to be 10 grains as a

criterion for gene induction. Since the number of labeled dusp1

and egr1 cells varied according to the amount of singing for song

nuclei, hopping for motor areas, and hearing song for auditory

regions, we had to normalize this behavioral variable to quantify

the proportion of double labeled cells. To do so, for each brain

region, we calculated the mean percentage of dusp1+, egr1+, and

dusp1+/egr1+ relative to all labeled cells, and statistically

compared the values within and across brain areas by ANOVA.

For the summary figure of expression (Fig. 10), we used singing

birds for song nuclei, and hopping zebra finches and budgerigars

or flying hummingbirds for the movement-activated areas [29].

For each calculation (song nuclei or non-vocal motor areas), signal

intensity of brain areas where each gene was minimally up-

regulated (dusp1 in NCM, egr1 in L2) was set to 0, and where it

was up-regulated most was set to 1 (dusp1 in LMAN, NAO, VMN

and egr1 in AreaX, MMSt, VAN for zebra finch, budgerigar, and

hummingbird respectively). The other areas were calculated

relative to these, and scaled from 0 to 1. Then the relative level

of gene induction (L) was color-coded into 5 graded colors from

white to green (L #0.05, 0.05, L #0.25, 0.25, L #0.50, 0.50,

L #0.75, 0.75, L #1.0).

Cloning and Sequence Analysis of Putative Dusp1
Regulatory Regions

To clone the dusp1 promoter regions, we extracted genomic

DNA from either blood or brain sections of the following species:

zebra finch (Taeniopygia guttata), owl finch (Taeniopygia bichenovii), star

finch (Neochmia ruficauda), cherry finch (Neochmia modesta), Bengalese

finch (Lonchura striata domestica), budgerigar (Melopsittacus undulates),

blue-fronted Amazon (Amazona aestiva), sulphur-crested cockatoo

(Cacatua galerita), sombre hummingbird (Aphantochroa cirrochloris),

Anna’s hummingbird (Calypte anna), eastern phoebe (Sayornis phoebe),

great-crested flycatcher (Myiarchus crinitus), rock pigeon (Columba

livia), chicken (Gallus gallus), blue-breasted quail (Coturnix chinensis),

Japanese mountain hawk-eagle (Nisaetus nipalensis orientalis a.k.a.

Spizaetus nipalensis orientalis), and white-naped crane (Grus vipio).

Then, we used forward (59) and reverse (39) primers that

recognizes conserved regions based on the zebra finch and

chicken genome alignments (UCSC genome database) in a PCR

reaction. Since we were not sure which part of the sequence was

conserved for each species, we tried several different primers

within the conserved region. Primers that worked for each species

were as follows: the forward 59 oligo DNA primers were: 5’-

GGCAGGTTTATTTAAGAAAAGAAA-39 (pigeon), 59-

CAAAAATAAAGCAAGGAAATAGC-39 (budgerigar), 59-AGT-

GATTAAGTACACACTGCC-39 (mountain hawk-eagle, Anna’s

hummingbird), AAGTACACACTGCCACATGTG-39 (zebra

finch, eastern phoebe, great-crested flycatcher, white-naped

crane), 59-TACACACTGCCAYATGTGAT-3’ (blue-fronted

Amazon, sulphur-crested cockatoo, sombre hummingbird, blue-

breasted quail), between -2696 to -2794 bp from start codon of

chicken dusp1 gene; and the reverse 39 primers were: 59-

TTGAAGGAGAAGAAGGAGCGG-39 (sulphur-crested cocka-

too, mountain hawk-eagle, blue-breasted quail), 5’-CACACCCG-

CAGGTTCACCAT-39 (zebra finch, budgerigar, eastern phoebe,

great-crested flycatcher, white-naped crane), 59-AGTCGAGGAC-

GAGGCACTG-3’ (blue-fronted Amazon, sombre hummingbird,

pigeon), 59- GTTGCAGGAGCCGCGGATG-39 (Anna’s hum-

mingbird), between 0 and 135 bp from start codon of chicken

dusp1. PCR conditions were 95uC for 4 min followed by 30 cycles

of 95uC for 45 sec, 53uC for 30 sec, and 72uC for 3 min with Ex
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taq polymerase (Takara, Ohtsu, Japan), except for blue-fronted

Amazon, eastern phoebe, great-crested flycatcher, white-naped

crane, mountain hawk-eagle. The PCR condition for these other

species were 94uC for 5 min followed by 30 cycles of 98uC for

10 sec, 60uC for 15 sec, 68uC for 3.15 min with primeSTAR

GXL DNA polymerase (Takara). PCR products were examined

on 1% agarose gels, extracted from the gels, ligated into the

pGEM-T Easy plasmid (Promega), and transformed into XL-1

blue E. Coli cells. Plasmid DNA was isolated and the inserted

cDNA was sequenced using vector specific primers. From these

sequences, for each species, we then designed another set of

primers to complete the insert sequence from the 59 and 39 ends

(19–22 bp primers). In each species, to confirm that dusp1 was

cloned, the sequences were BLAST searched against the UCSC

genome database and homologies to zebra finch and chicken

dusp1 coding and regulatory sequences were found. The Genbank

accession numbers of our regulatory sequences are AB574425 for

zebra finch, AB640892 owl finch, AB640893 star finch, AB640894

cherry finch, AB640895 Bengalese finch, AB574426 budgerigar,

AB640886 blue-fronted Amazon, AB640887 sulphur-crested

cockatoo, AB574427 sombre hummingbird, AB574428 Anna’s

hummingbird, AB640888 eastern phoebe, AB640889 great-

crested flycatcher, AB574429 rock pigeon, AB640896 blue-

breasted quail, AB640890 white-naped crane, AB640891 moun-

tain hawk-eagle.

For each species, we used Cluster Buster (http://zlab.bu.edu/

cluster-buster/cbust.html) [99] to search for cis-regulatory ele-

ments and Tandem Repeat Finder (TRF; http://tandem.bu.edu/

trf/trf.basic.submit.html) [100] for repetitive elements. In addition,

we used RepeatMasker (Smit, AFA, Hubley, R & Green, P.

RepeatMasker Open-3.0. 1996–2010,http://www.repeatmasker.

org.) to find more complex repetitive elements such as retro-

transposon sequences. The cloned sequences were aligned by

DIALIGN software (http://bibiserv.techfak.uni-bielefeld.de/

dialign/) [62] and displayed with Jalview software (http://www.

jalview.org/) [101]. We then used the dialign generated fasta

alignment file and the mega software (http://www.megasoftware.

net/) [63] to generate phylogenetic trees with the maximum

likelihood estimates. To calculate the percent of species with

identical sequence among vocal learners and among vocal non-

learners, we counted the number of species whose bases are

identical to each other in each group. In each group, at least 2–3

vocal learners (pink) or 3 or more vocal non-learner lineages (grey)

were used for the calculation. One species was selected as a

representative of each lineage such as chicken for Galliformes

(representative species have a star in Fig. 9A). This number was

then divided by the number of representative species that have

bases in the aligned genome sequence. We then averaged the

percent identity of 10 consecutive base pair windows and plotted

them in a graph. The difference was normalized by the standard

deviation of each value.

The 3169 bp upstream sequence of zebra finch dusp1 we

cloned is 98.9% identical to segments of an incomplete assembled

dusp1 sequence from the draft zebra finch genome database

(UCSC browser; [61]). Based on our analysis, we believe there was

an error in the zebra finch genome assembly, placing a 100 bp gap

in the promoter region and duplicating 200–1000 bp long

segments of the promoter region in tandem due to the repetitive

DNA (starting 279 bp 5’ to the putative start codon; Fig. 9). Thus,

for all comparisons, we used the sequences that we cloned, except

for chicken, which appeared to have a correct assembly based

upon the alignments we generated, without microsatellites.

Nomenclature
We used the new avian brain nomenclature [102,103] with

modifications as discussed in several previous reports

[29,34,45,104,105]. In brief, we relabeled the formally named

hyperstriatum dorsale (HD) as mesopallium dorsale (MD) and the

formally named hyperstriatum ventrale (HV) as mesopallium

ventrale (MV), due to the presence of genes, such as FoxP1 and

GluR1, whose expression is specialized in the mesopallium

[42,83]. Based on this definition, caudal mesopallium (CM) and

nucleus avalanche (Av) and oval nucleus of the mesopallium (MO)

of songbirds, the MO of parrots, and vocal nucleus of the anterior

mesopallium (VAM) of hummingbirds are all within the ventral

mesopallium. Abbreviations are in Table 1.

Some investigators equate songbird as a common names for the

latin Passeriformes, with songbird as an order of birds that consist

of both suborders oscines and sub-oscines. However, others use

songbird to describe oscines only. Both usages are present in the

published literatures. Thus, until phylogenetic analyses separates

oscines and subosciene as two separate ‘‘orders’’, we prefer the use

of the term songbird as the common name for Passeriformes, and

‘‘suboscine songbird’’ and ‘‘oscine songbird’’ to refer to the two

suborders.

Figure Preparation
The above mentioned camera systems or a DFC490 CCD

camera and Leica application suite (Leica Microsystems, Ban-

nockburn, IL) were used for making pictures of the emulsion

dipped slides. As described in [34], the photomicrographs were

adjusted in Adobe Photoshop CS3. The levels function was used

for all photomicrographs to expand the range of pixels. Images

were further adjusted by the color adjustment function so that the

signals in white had clear contrast to detect minor levels of gene

expression for qualitative analysis. All images of the same gene in

each species were adjusted in the same way to avoid modification

in gene expression across groups.

Supporting Information

Figure S1 Lack of strong induction of dusp1 in move-
ment-activated and other brain areas. Darkfield images of

in situ hybridization with dusp1 (A) and egr1 (B) in vocal areas and

adjacent movement-activated areas of singing birds with long-term

exposure of the emulsion. (C) Representative images of dusp1

expression in birds that had seizures induced by kainate injection.

(D) Adjacent sections hybridized with egr1. The white smudge

over the anterior ventral part of the section in D is an emulsion

artifact, which did not affect the white radioactive signals. Scale

bars = 50 mm for (A) and (B), 1mm for whole brains in C and D,

and 500 mm for high power images of song nuclei in (C) and (D).

(JPG)

Figure S2 Dusp1 expression in MMSt of budgerigars.
(A) Darkfield image of in situ hybridization in MMSt of the

striatum with dusp1 from a singing bird. (B) Bright field Nissl stain

image of the same section. Arrows point to the larger cells in

MMSt. Scale bar = 200 mm.

(JPG)

Figure S3 Hearing-induced dusp1 expression in bud-
gerigar brain. (A) Example darkfield images of in situ

hybridizations with dusp1 from a silent control male budgerigar

sitting still (no auditory stimulus) in the dark in a sound attenuation

chamber (A1), and a male bird under the same conditions except

that he heard playbacks of songs (A2). (B) Adjacent sections

hybridized to egr1. These examples show that dusp1 is specifically

Specialized Motor-Driven dusp1 in Vocal Circuits

PLoS ONE | www.plosone.org 18 August 2012 | Volume 7 | Issue 8 | e42173



induced in L2 (as well as Ov of the thalamus) and egr1 is induced

in the adjacent NCM, CM, and CSt (higher order auditory

neurons) due to hearing song; neither gene is induced in MMSt,

NAO, and MO (song nuclei) by hearing song, summarizing our

past findings. White, gene expression, mRNA signal. Red, cresyl

violet stain. Sections are sagittal. Scale bar = 2 mm.

(JPG)

Figure S4 Comparison of dusp1 expression in song
nuclei of three hummingbird species. (A1–3) sombre

hummingbird, (B1–3) rufous-breasted hermit, and (C1–3) Anna’s

hummingbird. Sections are from male birds that sang for about 30

minutes. Yellow lines, vocal areas where dusp1 was up-regulated.

Scale bar = 500 mm in C1 (applies to A1,B1,C1), C2 (applies to

A2,B2,C2), and C3 (applies to A3,B3,C3).

(JPG)

Figure S5 Hypothesized molecular interactions of
dusp1 and egr1 in the brain. Models are based on the known

molecular pathway of these genes in cultured cells [36,71–73], in-

vivo regulation in the brain [34], and this study. (A) Model of dusp1

expression inhibiting egr1 expression in cell culture experiments is

consistent with our findings in sensory-input neurons of the

thalamus and telencephalon. (B) Model of high egr1 expression in

the absence of high dusp1 from cell culture experiments is also

consistent with our findings in higher order sensory neurons and

motor areas. (C) Model of high dusp1 and egr1 expression in song

nuclei, highlighting parts of this pathway (? mark) where genetic

changes in dusp1 regulation and function could best explain the

results found in song nuclei of this study.

(JPG)
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